EC8491 - Communication Theory
Unit 1 Amplitude Modulation
Amplitude Modulation - DSBSC, DSBFC, SSB. VSB - Modulation index, Spectra. Power relations and Bandwidth - AM Generation - Square law and switching modulator, DSBSC Generation Balanced and Ring Modulator, SSB GenerationFilter, phase shift and Third Methods, VGB Generation. Filter method. Hilbert transform, Pro. envelope \& Complex envelope. Comparison of different AM techniques, Superheterodyne Receiver.

Introduction
Communication is the process of establishing connection or link between two points for information exchange.

Block diagram of Communication System.

Drawbacks of Baseband Transmission
(i) Large Antenna Flight
(ii) Signal get mixed up
(iii) Short range of Communication
(iv) Multiplexing is not possible.
(v) Poor Quality Reception.

The above drawbacks can be overcome by means of modulation techniques.

Modulation
Modulation is defined as the process by which some characteristics, usually amplitude, frequency or phase of carrier wave is varied in accordance with instantaneous Value of some over voltage, called modululing voltage (or) message signal.
Need for Modulation (or) Advantage of Modulation
(i) Easy of Radiation
(ii) Adywsment of Bandwidth
(iii) Reduction in height of Antenna
(V) Avoid mixing of signals
(v) Increases the range of Commuincation
(vi) Multiplexing
(vii) Improves Quality of Reception.

Actually carrier signal does not contain any information but it only carries information

Demodulation is defined as the process of extracting a modulating or baseband signal from the modulated signal.

(or)
DSB with full Carrier

The amplitude of carver signal is changed modulation.

$$
V_{A M}=V_{c}+V_{m}(t)
$$

Substitute eq (1) in (3)

$$
\begin{align*}
V_{A M} & =V_{c}+V_{m} \sin \omega_{m} t \\
& =V_{c}\left[1+\frac{V_{m}}{V_{c}} \sin \omega_{m} t\right] \\
V_{A M} & =V_{c}\left[1+m_{a} \sin \omega_{m} t\right] \tag{4}
\end{align*}
$$

Hence AM wave is given by

$$
V_{A M}(t)=V_{A M} \sin w_{C} t
$$

Sub (4) in (5)

$$
\begin{equation*}
V_{A M}(t)=V_{c}\left[1+m a \sin \omega_{m} t\right] \sin \omega_{c} t \tag{6}
\end{equation*}
$$

$$
\begin{equation*}
V_{A M}(t)=V_{c}\left[1+m_{a} \sin \left(2 \pi f_{m} t\right)\right] \sin (2 \pi+c t) \tag{7}
\end{equation*}
$$

ma \rightarrow modulation index (or) Depth of modulation Modulation index

The ratio of maximum amplitude of modulating signal to maximum amplitude

Amplitude Modulation
Amplitude Modulation is the process by Which amplitude of coovier signal is Varied in accordance with instantaneous value Camplitude) of the modulating signal, but phase and frequency remains constant.

AM freq range: $450-1600 \mathrm{KHz}$
FM freq range: $80-100 \mathrm{~Hz}$.
It is relatwic in expensive, Low Quality form of modulation that is used for Commercial broadcasting.
Mathematical Representation of AM wave.
Let the modulating signal $V_{m}(t)=V_{m} \operatorname{Sin} \omega_{m} t \rightarrow$ (1)
Carver Signal $\quad V_{c}(t)=V_{c} \sin \omega_{c} t$
$V_{c} \rightarrow$ Amplatiede of cover signal
$V_{m} \rightarrow$ Amplitude of modulating Signal.
$w_{m}, w_{c} \rightarrow$ Angular frequency of modulating \& Carrier Signal.

Frequency Spectrum and Bandwidth
The AM wave is given by

$$
\begin{aligned}
V_{A M}(t) & =V_{c}\left[1+m_{a} \sin \omega_{m} t\right] \sin w_{c} t \\
& =V_{c} \sin w_{c} t+m_{a} V_{c} \sin \omega_{m} t \sin w_{c} t
\end{aligned}
$$

$$
[\sin A \sin B]=\frac{\cos (A-B)-\cos (A+B)}{2 \text { Here }}
$$

Howe $A=W_{m} \quad B=W_{C}$.

$$
\begin{aligned}
& V_{A M}(t)=V_{c} \sin \omega_{c} t+\frac{m_{a} V_{c}}{2}\left[\cos \left(\omega_{c}-\omega_{m}\right) t-\omega_{0 s}\left(\omega_{c}+\omega_{m}\right) t\right] \\
& V_{A n}(t)=\underbrace{V_{c} \sin \omega_{c} t}_{\text {Carver }}+\underbrace{\frac{m a V_{c}}{2} \cos \left(\omega_{c}-\omega_{m}\right)}_{\text {lower side band }} t-\underbrace{\frac{m a V_{c}}{2} \cos \left(u_{c}+\omega_{n} t t\right.}_{\begin{array}{c}
\text { Upper } \\
\text { Side Band }
\end{array}}
\end{aligned}
$$

where $\frac{m a V_{c}}{g} \rightarrow$ Amplitude of Cower \& upper S.B
The negative sign (\rightarrow) associated with USB represents the phase shift of 180°

of carrier signal.

$$
m_{a}=\frac{V_{m}}{V_{c}} \quad V_{m} \angle V_{c} \rightarrow \text { Avoid distortion. }
$$

Hence value of $m a$ is between otb 1 if $m_{a}=1$, then $V_{m}=V_{c}$
Percent Modulation

$$
\begin{aligned}
\% \text { Modulation } & =\operatorname{ma} \times 100 \\
& =\frac{V_{m}}{V_{c}} \times 100
\end{aligned}
$$

for of $m_{a}=0.5$ corresponds to 50% modulation

AM Generation

Power Relations in AM wave.

AM wave consists of carrier and two Sidebands. The total power of modulated wave will be

$$
\begin{aligned}
P_{t} & =[\text { Carrier power }]+[\text { Power in LSB }]+[\text { Power in USB }] \\
P_{t} & =P_{C}+P_{L S B}+P_{U S B} . \\
& =\frac{V_{c}^{2}}{R}+\frac{V_{1 S B}^{2}}{R}+\frac{V_{U S B}^{2}}{R} . \\
P_{C} & =\frac{(R \text { MSS })^{2}}{\text { Load Resistance }}=\frac{\left(V_{C} / \sqrt{2}\right)^{2}}{R}=\frac{V_{c}^{2}}{2 R} \\
\text { CAMS } & =\text { Amplitude } / \sqrt{2})
\end{aligned}
$$

$$
P_{c}=\frac{V_{c}^{2}}{2 R}
$$

Wy power in sidebands $=P_{\text {LSB }}=P_{\text {USB }}=\frac{\left(V_{\text {USB }} / \sqrt{2}\right)^{2}}{R}$
but $V_{u S B}=\frac{m_{a V_{c}}}{2}$

$$
P_{L S B}=\text { USB }=\frac{m_{a}^{2} V_{c}^{2}}{8 R}=\frac{m_{a}^{2}}{4} P_{c} \quad\left[\therefore P_{c}=\frac{V_{c}^{2}}{2 R}\right]
$$

Total Power:

$$
\begin{aligned}
P_{t} & =P_{c}+P_{L S B}+P_{U S B} \\
& =\frac{V_{c}^{2}}{2 R}+\frac{m_{a}^{2}}{4}\left(\frac{V_{c}^{2}}{2 R}\right)+\frac{m_{a}^{2}}{4}\left(\frac{V_{c}^{2}}{2 R}\right) . \\
P_{E} & =P_{c}\left[1+\frac{m_{a}^{2}}{2}\right]
\end{aligned}
$$

Double sideband Full carrier (PSB FC)
DSBFC System contains full carrion and both the side bands.
DAB FC Modulation circuits
Law level Modulation

The circuit has two input namely Rrcarrien and modulating signal. When the modulating gignel is absent. only the cornier is applied, the areuit works only as a class .A amplifier and got ampsfied coovier at the output.

When modulating signal is applified. the amplifier operates as non Liner device and multiplication of carrier and modulating Signa will take place.

The gain of the amplifier is dependent on the modulating signal. The carrier is amplified based on gain variations.

The modulation index ma is proportional to the ampluticde of modulating signal. The Voltage gain of emitter modulator is given as

$$
A v=A a[1+m a \sin (2 \pi f m t)]
$$

\sin (2Rfmt) goes from maximum value of $+1 \&$ minimum value of -1 .

$$
A v=A a[1 \pm m a]
$$

At 100% modulation, ma $=1 \Rightarrow A v($ max $)=2 \mathrm{Aa}$. $\operatorname{Ar}($ min $)=0$.
operation
The modulating signal is applied through isolation Transformer. I. to the emitter of Q_{1} and carries is applied to the Base. The modulating signal derives the circuit into both

Saturation and cut sf thus producing the non lina amplifiers noessary for modulation to occur.

The colledor waveform includes the carrion and upper and laver side frequencies as well as a component at modulating signal frequency.

The unwanted modulating signal from AM waveform is removed by the coupling capacitor c_{2}, thus producing a symmetrical AM envelope at Vout across RL.

In emitter modulation, the amplatude of output signal depends on the amplitude of ilp carrier and voltage gain of the amplifies

-High Bevel Modulator [collector Modulator]
The modulation take place at the Collector terminal ie, output stage of transmitter. It has two transistors $T_{1} \& T_{2}$ where T_{1} is a high power RF Class C amplifier (on modulated amplifier.
T_{2} is a class B amplifier used to amplify the base band signal. Carves signal is applied to transistor T_{2}.

When the modulating signal $v_{m} \sin u_{m} t$ is appears across the modutaling Transistor T_{1}, its voltage will be added with carrier voltage k.

The slow variation in carovier supply voltage changes the magnitude of cavoier signal voltage at the output of modulated class c amplifier Hence AM wave is generated.

The eaoover supply voltage $v c$ is given by $V_{\text {AM }}=V_{C C}+V_{m}$ Sin int.
The modulated output voltage v_{0} will be

$$
\begin{aligned}
& V_{A M}(t)=V_{A M} \sin \omega_{C} t \\
& V_{A M}(t)=\left[V_{C C}+V_{m} \sin \omega_{m t}\right] \sin \omega_{C} t \\
& V_{A M}(t)=V_{C C}\left[1+\frac{V_{m}}{V_{C}} \sin \omega_{m} t\right] \sin \omega_{c} t \\
&=V_{C C}\left[1+m_{a} \sin \omega_{m} t\right] \sin u_{c} t
\end{aligned}
$$

Power officioncy is practically higher than 80%

Circuit diagram.

Power and efficiency calculation
The modulated power delivered to the output load depends on the input supplied by supply voltage and power dissipation in collector circuit.

Out of total parer in collector circuit, only a port of it reaches the output load, the remaining power in lost in collector circuit. Collector efficiency

$$
\begin{array}{rlrl}
\text { efficiency } & \text { Pout } & \text { Ptotal }=P_{\text {in }} & =P_{\text {out }}=P_{c l} . \\
\eta_{c}=\frac{P_{\text {P }}}{} & P_{\text {total }} & =\operatorname{Pcc}\left(1+\frac{m_{a}^{2}}{2}\right) \\
P_{\text {in }}=P_{c c}\left[1+\frac{m_{a}^{2}}{2}\right] & P \text { Pout } & =\eta \operatorname{Pin} \\
& & =\eta \operatorname{Pcc}\left[1+\frac{m_{2}^{2}}{2}\right]
\end{array}
$$

AM Generation - SQuare Law Modulator.

In general, any device operated in nonlinear region of ito output characteristics is capable of producing AM waves when the carrier and modulating signals are bed at the input

Thus the transmitter, triode tube, a diode etc, may be used as a square law modulator. The above circuit is common emitter Configuration. The modulation signal is applied to the emitter and RF Carrier at the base of transistor.

A Square law modulator circuit consists of
(i) A non tineas device.
(ii) A Band pars filler
(iii) A caovier source and modutaling signal

The moducbling and carvien Bignal ano comocted in serias woth each othos

$$
\begin{equation*}
V_{1}(t)=V_{n} \sin \omega_{m} t+V_{e} \sin w_{c} t \tag{1}
\end{equation*}
$$

The inpat oukpat ndation for non 'Onoan deviross as bollows.

$$
\begin{equation*}
V_{2}(t)=a V_{1}(t)+b V_{1}^{2}(t)+ \tag{2}
\end{equation*}
$$

Where a and b are conotanto Substitule eq (1) in (2), we get

$$
\begin{aligned}
& v_{2}(t)= a\left[v_{m} \sin u_{m} t+v_{c} \sin u_{c} t\right]+b\left[v_{m} \sin \omega_{m} t\right. \\
&= a\left[v_{c} \sin w_{c} t\right] \\
& b v_{c}^{2} \sin _{m}^{2} w_{c} t+2 b v_{m} v_{c} \sin w_{c} t+b v_{m}^{2} \sin ^{2} w_{m} t+ \\
& \sin w_{c} t+\ldots .
\end{aligned}
$$

(1)term \rightarrow modulating signal
(a) tom \rightarrow Carruin Signal
(3) term \rightarrow Square Moctulating Signal
(4) term \rightarrow Squared carovei signal
(5) term \rightarrow AM wave with only sidobands

The LC-Tuned arcuil acto as a bandparg, foller. The corcuit is buned to frequency f_{c} and ito bandwidth is equal to $2 f \mathrm{~m}$.

Switching Modulator

A Simple diode used for AM switching Modulator. The diode is forward biased for , every positive half cycle of the carrier and s betakes lake short circuit switch. The signal I appears at the input of bandpass filler.
for negative half cycle of the carrier the diode is reverse biased and behave like open. switch. The signal does not reach the better, and no output is obtained. Thus signal is modulated at the rate of carrie is frequency.

The Output volloge is given by

$$
V_{0}(t)=\left[v_{c}+v_{m} \sin \omega_{m} t\right] \sin u c t
$$

Applications of AM:.
(i) Radio broadcasting
(ii) Picture transmission in a TV system.
nl nouns th saved due to

The information is contained in two sidebands only. But the sidebands are images of coach other and hence both of them contain same information. Transmitting the whole thing cause power wastage and bandwidth also.
Double sideband Suppressed Castries (DSB-SC)
The transmitting wave consists of only is the upper and lower sidebands. Transmitted power e is saved here Through suppression of castries wave because it does not contain any useful of information.
Expression for DSB-SC
Let the Modulating signal, $V_{m}(t)=V_{m} \sin \omega_{m} t$ $V_{c}(t)=V_{c} \sin u_{c} t$

$$
\begin{aligned}
& V(t)_{\text {DB }}-S C=V_{m}(t) V_{c}(t) \\
& =V_{m} \sin \omega_{m} t V_{c} \sin \omega_{c} t \\
& =V_{m} V_{c} \sin \omega_{m} t \sin \omega_{c t} \\
& V(t) D S B-S C=\frac{V_{m} V_{c}}{2}[\underbrace{\operatorname{Cos}\left(\omega_{c}-\omega_{m}\right.}_{L S B}) t-\cos (\underbrace{\left.\omega_{c} \omega_{n}\right) t}_{U_{S B}}]
\end{aligned}
$$

Phasor Diagram
W_{m} (antic cochise)

Power Calculation (clockwise) ${ }_{\text {LSD }}$
Total power tranomitled in $A M$ is

$$
\begin{aligned}
P_{t} & =P_{c a r r i e r}+P_{L S B}+P_{U S B} \\
& =\frac{V_{c}^{2}}{2 R}+\frac{m_{a}^{2} V_{c}^{2}}{8 R}+\frac{m_{a}^{2} V_{c}^{2}}{8 R}=\frac{V_{c}^{2}}{2 R}+\frac{m_{a}^{2} V_{c}^{2}}{4 R .} \\
P_{t} & =\frac{V_{c}^{2}}{2 R}\left[1+\frac{m_{a}^{2}}{2}\right] \\
P_{t} & =P_{c}\left[1+\frac{m_{a}^{2}}{2}\right] \quad \text { Where } P_{c}=\frac{V_{c}^{2}}{2 R_{i}}
\end{aligned}
$$

if the carrier is suppressed, then the total power transmitted in DSB-SC-AM is

$$
\begin{gather*}
P_{t}^{\prime}=P_{L S B}+P_{U S B} \\
P_{t}^{\prime}=\frac{m_{a}^{2} V_{c}^{2}}{8 R}+\frac{m_{a}^{2} V_{c}^{2}}{8 R}=P_{c} \frac{m_{a}^{2}}{2} \\
\text { Power Savings }=\frac{P_{t}-P_{t}^{\prime}}{P_{t}}=\frac{1}{1+m a^{2} / 2} \\
\% \text { Power Saving }=\left(\frac{1}{1+m a^{2} / 2}\right) \times 100=66.67 \% \tag{ma=1}
\end{gather*}
$$

In DSB-SC, 66.7% of power is saved due to the Suppression of Carrier wave.
Generation of DSB-SC-AM

(or)
Diode Balanced Modulator
Balanced Modulator Double Balanced Modulator.

The Modulating Voltage across the two windings of a centre tap transformer are equal and opposite in phase. i.e., $V_{m}=-V_{m}^{\prime}$

The carries is applied to the centre tap of ils transformer and is in phase at base of $\pi \& T_{2}$. The modulated signal is antiphase at the two bases.

The input voltage to transistor T_{1} is given lag

$$
\begin{aligned}
V_{b c} & =V_{c}+V_{m} \\
& =V_{c} \sin w_{c t}+V_{m} \sin \omega_{m} t
\end{aligned}
$$

Similarly, the input voltage to transistor T_{2} is given by

$$
\begin{aligned}
V_{b c}^{\prime} & =V_{m}^{\prime}+V_{c} \\
& =-V_{m} \sin \omega_{m} t+V_{C} \sin w_{c t}
\end{aligned}
$$

By non linearily relahonship.

$$
\begin{aligned}
& i_{1}=a_{1} V_{b c}+a_{2} V_{b c}^{2} \\
& i_{1}^{\prime}=a_{1} V_{b c}^{\prime}+a_{2} V_{b c}^{2}
\end{aligned}
$$

Substitute the values of $V b c$ and $V_{b e}^{\prime}$

$$
\begin{aligned}
& \left.l_{1}=a_{1}\left[V_{c} \sin \omega_{c} t+V_{m} \sin u_{m} t\right]+a_{2}\left[V_{c} \sin u_{c} t+v_{m} \sin \omega_{m} t\right]^{2}\right] \\
& l_{1}^{\prime}=a_{1}\left[V_{c} \sin w_{c} t-v_{m} \sin u_{m} t\right]+a_{2}\left[V_{c} \sin w_{c} t+v_{m} \sin u_{m} t\right]^{2}
\end{aligned}
$$

The output AM Voltage V_{0} is given by

$$
V_{0}=k\left(i_{1}-i_{1}^{\prime}\right)
$$

This is because current $i_{1} \& i_{1}^{\prime}$ flow in opposite direction in a tuned circuit.

$$
V_{0}=2 k a_{1} V_{m} \sin \omega_{m} t+4 k a_{2} v_{c} V_{m} \sin \omega_{c} t \sin \omega_{m} t
$$

The other terms are balanced out.

$$
V_{0}=2 k v_{m} a_{1}\left[1+\frac{2 a_{2} v_{m}}{a_{1}} \sin w_{c} t\right] \sin \omega_{m} t
$$

Where $m a=\frac{2 a_{2} v_{m}}{a_{1}}$ is modulation index.

Ring Modulator (or) Diode Balanced Mochultor.
It is one of the most popular method of generating a DSB-SC wave. The circuil employs diodes as non linear devices and the Carrion Signal is connected between centre laps of the input and output transformers. The four diodes are controlled by a carrier $V_{c}(t)$ of frequency f_{c}.
 Modulated wave VDSBSSC(t)

Positive half aude of carries:-
Diodes D_{1} and D_{2} are forward biased. At the time $D_{3} r D_{4}$ are reverse biased and acts like open circuits. The current divices equally in the: upper and lower portions of the primary windings of Tr 2.

The current in upper part of the ceinding produces a magnetic field that is equal and opposite to the magnetic fold produced by the current in lower half of the secondary.

These magnole folds canal each olthon and no output is induced in the soeendory thus the carers is effectively exposed.
Negative half cycle of carrier
When the polasily of the Carven reverses Diodes D_{1} and D_{2} are toverse blazed and diodes D_{3} and D_{4} conduct. Again the current flows in the secondary winding of T_{r} and the Primary windings of Tr 2.

The equal and opposite magnate folds protest in Tore cancel each other out and thus result is zero carries output. The carrier is effocitingly balanced out. Principle of operation

When both The carrier and modulating signal are present, during positive half cyds of the carrier, diodes D_{1} and D_{2} conduct, while diodes D_{5} and D_{4} does not conduct.

During negative half cycle of the carrie Voltage diodes D_{3} and D_{4} conduct and $D_{2} \& D_{2}$ does not conduct.
phase reversal.
When polarity of modulating Signal changes, the result is a 180° phase reversal

At the time, during the positive half cycle of the carrier, diode D_{3} and D_{4} are is forward bias and negative half cycle of the carrier, diodes $D_{1} \& D_{2}$ are in reverse bias.

$$
\begin{aligned}
V_{0}(t) & =V_{m}(t) V_{c}(t) \\
& =\frac{V_{m} V_{s}}{2}\left[\cos \frac{\left(\omega_{c}-\omega_{m}\right) t}{L S B}-\frac{\cos \left(\omega_{c}+\omega_{m}\right) t}{U_{S B}}\right]
\end{aligned}
$$

The ring modulator circuit is also known as double balanced modulator. Because comparing to balanced modulator, here two more diodes are used.

$V_{\text {hSBC }}(t)$

Case(i) When Modulating Signal Present diodes D_{1}, D_{2} or D_{3}, D_{4} will conduct depends on signed polarity.
Case(ii) When carrier sign od alone present, the flow of current in two halves of output transformer is equal \& opposite. and no output can develop across the load.
Case (iii) When both signals are present, the resultant Potential is one half of the output tsansfarman becomes larger than other.

It is more officiant in transmitted power and better signal to noise ratio Compared to DSEFC8 sse transmission.

Eventhough Carrier is suppressed the Bardwith of PSBFC remains same as DSBFC. The output is free from carrier and contains upper and lower sidebands only.
Single Sideband Suppressed Carrier [SSE-SC]
In DSB signal, the basic information is transmitter twice, once in each sideband. The Sidebands are the sum and difference of the carrier and modulating signals and the information must be contained in both of them.

So, wither one sideband is enough for transmilling as sol as recovering the useful message. One side band may be suppressed. The romaining sideband is called a single sideband carrier (SSB-SC) signal.

SSB requires half of the bandwidth of the DSB-SC use considerably less tranomilled power.

$$
B \cdot W=f m \text {. }
$$

$$
[\therefore B \cdot w \text { of } A M=2 f m]
$$

In order to suppress one of the sidebands, the input signal fed to the modulator 1 is 90° out of phase with that of the signal foo to the modulator '2.'

$$
\begin{aligned}
\text { let } V_{1}(t) & =V_{m} \sin \left(\omega_{m} t+q_{0}\right) V_{c} \sin \left(w_{c} t+90\right) \\
V_{1}(t) & =V_{m} \cos \omega_{m} t+V_{c} \cos u_{c} t \\
V_{2}(t) & =V_{m} \sin \omega_{m} t+V_{c} \sin w_{c} t \\
V_{S S B}(t) & =V_{1}(t)+V_{2}(t) \\
& =V_{m} V_{c}\left[\sin \omega_{m} t \sin w_{c} t+\cos \omega_{m} t \cos w_{c} t\right]
\end{aligned}
$$

We know that

$$
\begin{aligned}
& \sin A \sin B+\cos A \cos B=\frac{\cos (A-B)}{2} \text { cosonion } \\
& V_{B B} B(t)=\frac{V_{m} V_{c}}{2} \cos \left(\omega_{c}-u_{m}\right) t
\end{aligned}
$$

Chaser diagram.

Power calcubluion
Power in SSB-SC AM is

$$
P_{t}^{\prime \prime}=U_{S B}(O 1) L S B=\frac{1}{4} m_{a}^{2} P_{C} .
$$

Power Savings with respect to AM with Carrier

$$
\begin{aligned}
& =\frac{P_{t}-P_{t}^{\prime \prime}}{P_{t}} \\
& =\frac{\left[\frac{1+m_{a}^{2}}{2}\right] P_{c}-\left[\frac{m_{a}^{2}}{4} P_{c}\right]}{\left[\frac{1+m_{a}^{2}}{2}\right] P_{c}} \\
\text { Power Saving } & =\frac{1+\frac{m_{a}^{2}}{2}-\frac{m_{a}^{2}}{4}}{1+\frac{m_{a}^{2}}{2}}=\frac{4+m_{a}^{2}}{4+2 m_{a}^{2}}
\end{aligned}
$$

if $m_{a}=1$, then $\eta=83.33 \%$ In addition to Cover, one of the sidebands also suppressed.

Generation of SSB

Frequency Discrimination
(or)
Filler Method
(on)
Balanced Modulator
Filter Method
phase Discrimination
Phase shift Method (or)
Phasing Method.

The method basically consists of a balanced modulator (to generate DSB se signal) and suppression filter [to remove unwanted sidebanolos]

In practical, it is difficult to crystal oscillation with a sharp cut off frequency on other side. If the Bandwidth is reduced is an effort to eliminate the unwanted side band, such a filler will introduce attenuation in the unwanted sideband alow. Increasing the Bandwidth may result in passing some of the unwanted sidebands to the output.

The filler must have blat pass band and extremely high attenuation, outride the pass band. Hence ca factor of this type of tuned circuit
must be very high. The value of a factor increases as the difference between modulating carver frequency increases.

Q2 factor can be expressed as

$$
Q=\frac{f_{c}\left[\log ^{-1} s / 20\right]^{k}}{4 \Delta f}
$$

Q-Quality factor
$f_{c} \rightarrow$ Carrier frequency
$S \rightarrow d B$ level of suppression of unwanted sideband $\Delta t \rightarrow$ frequency separation between sidebands:

The filtered signal is upconverted in second bolaneed modulator (mixer) to the final transmitter frequency. and then amplified before being coupled to the antenna.

Linear power amplifier are used to avoid distortion \& the sideband signal. Class B is more efficient that class A

For transmitting high frequencies, Q of tuned circuits must be very high and after a particular limit increase in Q is not possible. hence Mechanical filters are oflonly used. Because small size, very good attenuation \& band pars characteristics, and adequate upper frequency.

The crystal filters may be cheaper but are preferable orly at frequencies greater than 1 MHz .

The balanced fo fill es mix en similar to balanced modulator except that its sum frequency is away from the crystal oscillator frequency.

It is difficult to filter out the unwanted frequencies in the output of the mixer if transmitting frequency is much higher than operating frequency.
phase Shift Method.

The modulating signal and carries signals are fed into balanced modulator 4 in the usual manner. The balanced modulator 2 is given there signals after a phase shift of 90

The unwanted sidebands fillers can be removed by generating the components of sidebands out of phase. The undesired sideband is USB and then two USB's are generated such that they are 180° out of phase with each other. So that USB's add with each other and cancel out each other.

Two balanced modulators and two phase shbleas are wood in this phasing method. The carrion signs bs canoed out in this circuit by both of the boloned modulator ard unwanted. sidebands cancel at the output of Summing amplifiers.
Il sig for modulator 1

$$
\begin{equation*}
V_{c}(t)=V_{c} \sin u_{c} t \rightarrow 0, V_{m}(t)=V_{m} \sin u_{m} t . \tag{2}
\end{equation*}
$$

Ilp signal for modulator 2

$$
\begin{align*}
& V_{c}(t)=V_{c} \sin \left(\omega_{c}+\pi_{12}\right) t=V_{c} \cos \omega_{c} t \tag{3}\\
& V_{m}(t)=V_{m} \sin \left(\omega_{m}+\pi_{2}\right) t=V_{m} \cos \omega_{m} t \tag{4}
\end{align*}
$$

Output for modulator 4

$$
\begin{aligned}
V_{1}(t) & =V_{c} \sin \omega_{c} t V_{m} \sin \omega_{m} t \\
& =\frac{1}{2} V_{m} v_{c}\left[\cos \left(\omega_{c}-\omega_{m}\right) t-\cos \left(\omega_{c}+\omega_{m}\right) t\right]
\end{aligned}
$$

Output from Modulator 2

$$
\begin{aligned}
V_{2}(t) & =V_{m} \cos \omega_{c} t \cos \omega_{m} t \\
& =\frac{1}{2} V_{m} v_{c}\left[\cos \left(\omega_{c}-\omega_{m}\right) t+\cos \left(\omega_{c}+\omega_{n}\right) t\right]
\end{aligned}
$$

The output from linear summon is $V(t)+V_{2}(t)$

$$
V_{1}(t)+V_{2}(t)=V_{m} V_{c} \operatorname{Cos}\left(\omega_{c}-\omega_{m}\right) t
$$

The output of two balanced modulator are summed to produce lower sideband signal. Thus one of the sideband is cancelled, whereas other is reinforced.

Advantages
It provides the cary of switching from one sideband to the other.

It does not require any sharp cut off bolter-
It has ability to generate SSB at any frequency.
Dis Advantages
Since we are using two balanced modulators, each should have equal sonsitivity and give exact same output.

The carver phase shift network must provide an exact 90° phase shift at carriers frequency.

Modified Phase Shut Method (or) Third Mother
This method is overcome the limitation of phasing method.

The disadvantage of phase shift method. is the requirement of an AF phase shift circuit Which should operate over large range audio frequanciors.

But it also retains the advantage like its ability to generate $S S B$ at any frequency and wo of low audio frequency. But the circuit is complex.

Balanced Modulators BM1, BM 2 both have the unsthifted modulating signal as inputs. Once BM take the audio frequency Subcarrion with a 90° shift from oscillator
BMz_{2} receives the subcarvier signal directly from the oscillator. This method tries to avoid the phase shift of audio frequencies

The bow pass bitter at the output of $B M_{1}$ \& $B M_{2}$ with cut of frequency ensured the
input to the $\mathrm{BM}_{3} 8 \mathrm{BM}_{4}$. The output of BM_{3} and $B M_{4}$ gives the derinod Sideband Suppers

Output of Balanced modulator 1

$$
\begin{aligned}
& =2 V_{0} \sin \left(\omega_{0} t+90\right) V_{m} \sin \omega_{m} t \\
& =V_{m} V_{0}\left[\cos \left(\omega_{0} t-\omega_{m} t\right)+90\right)-\cos \left(\omega_{0} t+\omega_{m} t\right) t
\end{aligned}
$$

Output of Balanced Modulator 2

$$
\begin{aligned}
& =2 v_{0} \sin \omega_{0} t v_{m} \sin \omega_{m} t \\
& =v_{m} v_{0}\left[\cos \left(\omega_{0} t-u_{n} t\right)-\cos \left(\omega_{0} t+\omega_{m} t\right)\right]
\end{aligned}
$$

The low pass fallers in the $B M_{4} \& B H_{2}$ diminates the upper sideboards of modulator

Output of LPF, is $V_{n} V_{0} \cos \left(\omega_{b} t-\omega_{m} E\right)+90$
Output of LPF 2 is $V_{m} V_{0} \cos \left(\omega_{0}-u_{m}\right) L$.
Assume $V_{m}=V_{0}=V_{c}=1$
Output of Balanod. Modulator 3

$$
=2 \sin \omega_{c} t+\cos \left(\omega_{0} t-\omega_{m} t+90\right)
$$

It is in the form of $\sin A \sin B=\frac{1}{2}[\sin (A+B)+\sin (A-B)]$

$$
\therefore \sin \left[\left[\omega_{c}+\omega_{0}-\omega_{m}\right] t+90\right]+\sin \left[\left(\omega_{c}-\omega_{b}+\omega_{m}\right) t+q 0\right]
$$

Output of Balanced Modulator 4

$$
\begin{aligned}
& =2 \sin \left(\omega_{c} t+90\right) \cos \left(\omega_{0}-\omega_{m}\right) t \\
& =\sin \left(\left(\omega_{c}+\omega_{0}-\omega_{n}\right) t+90\right)+\sin \left[\left(\omega_{c}-\omega_{0}+\omega_{m}\right) t+90\right]
\end{aligned}
$$

From eq (1) c (8). He output of summer circuit is

$$
\begin{aligned}
V_{0}= & \sin \left[\left(\omega_{c}+\omega_{0}-\omega_{m}\right) t+90\right]+\sin \left[\left(w_{c}-\omega_{0}+\omega_{m}\right] t-90\right]+ \\
& \sin \left[\left(\omega_{c}+\omega_{0}-\omega_{m}\right) t+90\right]+\sin \left[\left(\omega_{c}-\omega_{0}+\omega_{m}\right) t+90_{0}\right] \\
= & 2 \sin \left[\left(\omega_{c}+\omega_{0}-\omega_{m}\right) t+90\right] \\
& V_{0}=2 \cos \left(\omega_{c}+\omega_{0}-\omega_{m}\right) t
\end{aligned}
$$

To find RF output frequency is fo $+60-f m$ which is essentially the lower sideband of RF carrier $f_{c}+f_{0}$

Advantage of $S S B$
(i) Since only single sideband is transmitted. The Bu of tranomitter and channel is only fm.
(ii) power of suppressed carrier and sideband is Saved.
(iii) Because of narrow Bandwidth of SSB , the effect of noise at the receiver circuits is reduced. This gives better quality of reception in SSB

Application
(i) point to point radio telephone communication
(ii) SSB Telegraph system.
(iii) police wireless communication
(iv) VHF and UHF Communication.

Vestigial Sideband (VSB) Modulation
SSB-SC signals are relatively difficult to generate due to difficulty in isotaling desired sideband. The required filter must have a very sharp cut off charaderistics particularly when the baseband signal contains extremely low frequencies.
[eg:- Television \& Telegraphic signalo]
This difficulty is overcome by a scheme Known as keg vestigial sideband modulation which is a Compromise between SSB-SC and DSB-SC modulation

In VSB, the desired sideband is allowed to pass completely. Whereas just a small portion (Called trace vestige) of the undesired sideband is allowed. The transmitted vestige of undesired sideband compensates for the loss of the wanted sideband.

Generation of VSB - Fillers method

The product modulator generates DSB-SC wave from message signal and carrier signal.

This DSB-SC signal is given to input of BPF, which reject or suppress any one sideband and passes a portion of other sideband.

The portion from fo to $f c+f m$ in USB. The portion from bc to $b c+b v$ is suppressed partially.

The portion from fe to fc.fon in LSB. Its portion from $b c-b v$ to $b c$ is to be transmittal vestige.

The filter response is only for positive frequencies. The frequency response is normalized, So that carovier frequency $|H(b c)|=1 / 2$.

If the transition interval $f_{c}-f_{v} \leq|b| \leq f c t b v$. the following two conditions are satisfied.
(i) Sum of values of magnitude response
 above $\&$ below fo is undy.
(ii) The phase responser $[\arg H(f)]$ is unity. $H(b)$ Satisfies the Condition.

$$
H(f-f c)+H(f+f c)=1 \text { for }-f m \leq f \leq f_{m} \text {. }
$$

Transmission Bandwidth

$$
\begin{aligned}
B W & =f m+f v \text { width of } V S B \\
& L \text { message B.w. }
\end{aligned}
$$

VSB Modulated wave in time domain is

$$
\begin{aligned}
& \text { Modulated wave in tune } \\
& S(t)=\frac{1}{2} V_{c} m(t) \cos \left(2 \left[1 f(t) \pm \frac{1}{2} V_{c} m^{\prime}(t) \sin (2 \pi f(t)\right.\right.
\end{aligned}
$$

Signal
RF

Heterodyne means to mix two frequencies together in a nonlinear device or 10 translate one frequency to another using nonlinear mixing. Essentially there are five section in a superhelerody receiver.

1. RF section
2. Mixer / Converter section
3. If section
4. Audio detector section
5. Audio amplifier section.

RF Section:-
The RF section generally consists of a
preselector and an amplifier stage. They can be separate circuits or a single combined circuit. ane preselector is a broad tuned bandpans biter with an adjustable centre frequency that is tuned 10 the desired carrier frequency. The primary purpose of the preselector is to provide enough initial bandlimiting to prevent a specific unwartied radio frequency called the image frequency. from entering the receiver. The preselector also reduces the noise bandwidth of the receiver and provides the initial step towards reducing the overall receiver bandwidth to the minimum bandwidth required to pass the information signal

RF amplifier determines the sensitivity of Q the receiver.

Advantages:.

1. Greater gain a better sensitivity
2. Improved image frequency rejection
3. Better Signal to No ise ratio
A. Better selectivity.

Mixer / converter section :.
The mixer / converter section includes a radio frequency oscillator stage and a mixer/ converter stage. The miser is a non-linear device and its purpose is to convert radio frequencies to intermediate frequencies. Heterodyning lakes place in the mixer stage, and radio frequencies are downconvorted to intermediate frequencies. Although. the carrier and sideband frequencies are translated from RF to IF., the shape of the envelope remains the same and \therefore the original information contained in the envelope remains unchanged. Bandwidth remain unchanged due to heterodyning The intermediate frequency of $A M$ is 455 KHz .

The if section consists of a sends
If section: (Apl/CNAT)
satin of of if amplifiers and band pare fitrasts. Host of the receiver gain and nemwiwing pelackivity is achieved in the if section. The if conte yeapenay and bandwidth are constant for all stations and are chosen so that their frequency in lew than any of the RF signals to be received. tine If is always lower in frequency than the RF because it is easier and less expensive to construct high gain stable amplifiers for the low frequency signals.

Detector section:-
Tine purpose of the detector section b to convert the if signals back to the original source information. The detector is generally called an audio detector.

Audio amplifier section:-
The audio section comprises several cascaded audio aniplifiers and one or more speakers. NO: of amplifiers depends on audio signal power desired.

Receiver operation:
During the demodulation process in a superheterodyne receiver, the received signals undergo two or more frequency translations. First the RF is converted 10 IF , then the If is converted to the source information.

RF for the comercial AM broadcast band are frequencies between 535 kHz to 1605 kHz , and If signals are frequencies between 450 kHz to 460 kHz . Intermediate frequencies refer to frequencies that are used within a transmitter or receiver that fall somewhere between the radio frequencies and the original source information frequencies.

Frequency Conversion:-
Frequency conversion in the mixer/converter, stage is identical to frequency conversion in the modulator stage of a transmitter except that in the receiver, the frequencies are down converted rather than up converted. In the mixer/ convertor, RF signals are combined with the local oscillator frequency in a non-linear device. The output of the mixer contains an infinite number of harmonies and cross product frequencies, which include the sum
and difference frequencies between the desired RF carrier and local oscillator frequenter The if filters are tuned to the difference frequencies. The local oscillator is designed such that its frequency of oscillation is always above or below the desired Rf carrier by an-amount equal to if centre brequany.
\therefore Difference between the RF and wal oscillator frequency is always equal to IF.
sine adjustment for the centre frequency of the preselector and the adjustment for the local oscillator frequency are gang lined. Gang tuning means that two adjustment's are mechanically lied lugether. So that a single adjustment will change the centre frequency of preselector and at the same time, change the local oscillalur frequency. then the local oscillator frequency is lured above the $R f$ it is called high side injection. whiten the local oscillator frequency is lined below the RF it is called low side injection.

For high side injection $f_{10}=f \mathrm{RF}+f_{\text {IF }}$
For low side injection $f 10=f R F-f I F$.

The result of the Hilbert tronstorm in
$f_{10}=$ local oscillator frequency (Hz)
$f_{R F}=$ radio frequency $\left(\mathrm{H}_{z}\right)$
$f_{1 F}=$ Intermedial.e frequency $(H z)$.

The input to the receiver could contain any of the AM broadcast band channels, which occupy the bandwidth between 535 kHz to 1605 kHz .

In the example, the preselector is tuned to channel 2 . which operates at 550 kHz , carrier frequency and contains sidebands extending from 545 kHz to 555 kHz . Tine preselector is broadly tuned to a 30 kHz passband allowing channels 1,2 , and 3 lo pars through it in lo the mixer / converter stage., where they are mixed with a 1005 kth local oscillator frequency. sine mixer op conliains the same three channels except because high side injection is used., the heterodyning process causes the side bands 10 be inverted. In addition, channels 1 and 3 switch places in the frequency domain with respect to channel 2 .

The heterodyning process converts channel, from 535 kHz 10545 kHz band 10 460 klgz to 470 kitg band. channel 2 from 545 klty to 555 kHz band. 10250 kHz 10 band. and channel 3 from. 555 kH
$10 \quad 440 \mathrm{kHz}$ to 450 kHz band channel 2 is the only channel that falls with in the bandwidth of if filters.
\therefore Channel 2 is the only channel that continues through the receiver to the If amplifiers and eventually $A M$ demodulator circuit.

Hilbert transform \& ils properties:-
Hilbert transform is unlike many other transforms because it does not involve a change of domain. In contrast fourier, Laplace and z-transforms start from lime domain representation of a signal and introduce the transform as an equivalent frequency domain representation of signals. The resulting two signals are equivalent representations of the same signal in terms of two different arguments. time and frequency.

The renault of the Hilbert transform is not equivalent to the original anal, rather it in a completely different Neal.

The Hilbert transform doennot involve a domain change (i) the Hilbert transform of a signal $x(1)$ is another signal denoted by $\hat{x}(\vec{l}$ in the same domain.

The Hilbert transform of a signal $x(t)$ is a signal $\hat{x}\left(v^{*}\right)$ whose frequency components lag the frequency components of $x(t)$ by 90°. In other words, \hat{x} (v) has exactly the same frequency components present in $x(t)$ with the same amplitude except there is a 90° phone delay.
consider $x(t)=A \cos (2$ int $+\theta)$
The Hilbert transform of the above signal is,

$$
\begin{aligned}
\hat{x}(t) & =A \cos \left(2 \pi \text { for }+\theta-90^{\circ}\right) \\
& =A \sin (2 \pi f 0 t+\theta)
\end{aligned}
$$

A delay of $\frac{\pi}{2}$ at all frequencies means $e^{j 2 \pi f o t}$ will become

$$
=-j e^{j 2^{2 \pi} j_{0} t} \text { and } e^{-j 2 \pi j_{0} t}
$$

$$
e^{-j(2 \pi p o t-\pi / 2)}=j e^{-j 2 \pi f o t}
$$

At positive frequencies, the spectrum of the signal is multiplied by $-j$; and at negative frequencies, it is multiplied by $+j$. This is equivalent to saying that the spectrum of the signal is multiplied by, $-j \operatorname{sgn}(f)$.

Assume that $x(t)$ is real and has
no $D C$ component (i) $\left.x(f)\right|_{f=0}=0$

$$
\begin{aligned}
& \therefore \quad F[\hat{x}(t)]=-j \operatorname{sgn}(f) \times(f) \\
& \quad F[-j \operatorname{sgn}(f)]=\frac{1}{\pi r}
\end{aligned}
$$

Hence

$$
\hat{x}(t)=\frac{1}{\pi t} * x(t)=\frac{1}{\pi t} \int_{-\infty}^{\infty} \frac{x(\tau)}{t-\tau} d \tau .
$$

Thus the operation of the Hubert
transform is equivalent to a Convolution (i) filtering.

Performing the Hilbert transform on a signal is equivalent to a 90° phase shift in all its frequency components : the only Change that the Hilbert transform performs on a signal is changing its phase most important the amplitude of the frequency components of the signal and the energy and power of the signal donot change by performing the H filbert transform operation.

Properties.
Evenness \&oddnes:
The Hilbert transform of an
even signal is odd and the Hilbert transform of odd signal is even.

If $x(t)$ is event, then $\times(f)$ is a
real and even function. $-j \operatorname{sgn}(f) \times(f)$
is an imaginary and odd funclion. Hence its inverse fourier transform far) will be odd.

If $x(t)$ is odd, then $x(g)$ is imaginary and odd. Thus $-j \operatorname{sgn} g) \times(j)$ is real and even $\therefore \hat{x}(t)$ is oren.

Sign Reversal:
Applying the Hilbert transform operation to a signal twice causes a sign reversal of the signal.
(ii)

$$
\hat{x}(t)=-x(t)
$$

$$
\Rightarrow \quad F[\hat{x}(t)]=[-j \operatorname{sgn}(f)]^{2} \times(f)
$$

$$
\Rightarrow \quad F[\hat{x}(t)]=-x(f)
$$

Where $x(f)$ does not contain any impulses at the origin.

Energy:
The energy content of a signal is equal to the energy content of its Hilbert transform.

$$
\begin{aligned}
& E_{x}=\int_{-\infty}^{\infty}|x(t)|^{2} d t \Leftrightarrow \int_{-\infty}^{\infty}|x(t)|^{2} d t . \\
& \text { (11) } \hat{E_{x}}=\int_{-\infty}^{\infty}(\hat{x}(-))^{2} d t \Leftrightarrow \int_{-\infty}^{\infty}\left(-j \operatorname{sgn}(f) \times\left.(t)\right|^{2} c c^{c} c\right. \\
& \begin{aligned}
\left.|-j \operatorname{sgn}| p\right|^{2} & =1 \\
& \left.\Rightarrow E_{64}=\int_{-\infty}^{\infty} \mid x(f)\right)^{2} d y=E \infty
\end{aligned}
\end{aligned}
$$

Orthogonality:
The signal $a(v)$ and its Hilbert transform are orthogonal Using Parsevals theorem of the Fourier transform,

$$
\left.\int_{-\infty}^{\infty} x(t) \hat{x}(t) d t=\int_{-\infty}^{\infty} x(y)\left[-j^{3 g n} x y\right)\right]^{n} d y
$$

$$
=-j \int_{-\infty}^{0}(x(f))^{2} d f+j \int_{-\infty}^{\infty}(x(y))^{2} d f
$$

$$
=0
$$

Pre Envelope \& Complex Envelope:-
Pre envelope:.
The pre-Envelope of the signal $x(t)$ is defined an,

$$
x_{p(t)}=x(t)+j \hat{x}(t)
$$

$x(t)$ is the real part of pre-envelope and Hilbert transform $\hat{x}(t)$ is the imaginary part of pere envelope.

The Fourier transform of the preenvelope is given on,

$$
\begin{aligned}
x p(f) & =x(f)+j[-j \operatorname{sgn}(f) \times(f)] \\
& =x(f)+\operatorname{sgn}(f) \times(f)
\end{aligned}
$$

We know that,

$$
\operatorname{sgn}(f)=\left\{\begin{array}{ccc}
1 & \text { for } & -f>0 \\
0 & \text { for } & f=0 \\
-1 & \text { for } & f<0
\end{array}\right.
$$

above equation becomes,

$$
\times p(f)=\left\{\begin{array}{ccc}
2 \times(f) & \text { for } & f>0 \\
\times(0) & \text { for } & f=0 \\
0 & \text { for } & f<0
\end{array}\right.
$$

Thus the Pre-envelope of the signal has no frequency content for negative freq.

complex envelope:-
The complex envelope of the bandpass signal $x(t)$ is given an,

$$
x_{c}(t)=x_{p}(t) e^{-j 2 \pi f c t}
$$

Here $x_{c}(t)$ is the complex envelope and $x_{p}(t)$ is the pre envelope. f_{c} is the center frequency of the band pass signal.

$$
\therefore x_{p}(t)=x_{c}(t)-e^{j 2 \pi f c t}
$$

Fourier transform of above equation becomes

$$
x_{p}(f)=x_{c}\left(f-f_{c}\right)
$$

Complex envelope of the bandpay low pass spectrum. 67

Suppression of the carrier:-
The balanced modulator is used to suppress the carrier from the AM signal, The inputs to the balanced modulator are carrier and modulating signal. The output of a balanced modulator is upper and lower sidebands with suppressed carrier (or) DSBSC signal.
Balanced Modulator or Ring modulator using diodes

The sum of any two frequency eomponenl.s in the range $f c-f v \leq f \leq f_{c}+f_{v}$ is equal to unity

$$
H\left(f-f_{c}\right)+H(f+f c)=1
$$

Phone response is linear.
Transmission Bandwidth

$$
B_{T}=f_{r}+k l .
$$

Advantages :.

1. Low frequencies, near $f c$ are transmitted without any attenualzon
2. Bandwidth is reduced compared to DSB.

Applications:-
$V S B$ is mainly used for $T V$ transmission, since low frequencies near fo represents significant picture details. They are unaffected due to VSB.

Performance Parameters of AM Receivers

1. Selectivity
2. Sensitivity
3. Fidelity
4. mace frequency Rejection.

Urit-II. Angle Modulation
Phase and frequency rodutalion- Narrowband and hide band fro - Modulation Index, spectra, Power relations and bandwidth - Fro Modulation Direct and Indirect methods, Fr demodulation, FN to AN conversion, FN Discriminator, PLL as FND demodulator.

Introduction.
Angle modulation is a method of analog modulation in which either the phase or frequency of the carrion wave is varied according to the message signal. In this method of modulation. He amplitude of the carrier ware is remained constant.

Advantages:

1) Improved Noria Immunity and interference.
2) Improved system fidelity and officient power. Properties of Ingle- Nodulared wave:-
1. Constancy of transmitted power
2. Non ll meority of modulation process.
3. Taregularily of zero crossing.

4 . Wis realization difficulty of message waveform.
5. Trade off of increased tran mission bandwidth for Improved more performance.
Phase modulation:-
It is defined as the. process by which phase of a carrier if varied in accordance wi th mistanlañone Value of modulating Vorlage or me stage signal, b ho frequency and amplitude remains same

Generation of Phase Modulation:-
It can be generated by differentiating the modulating signal $m(t)$ and the differentiated output is used as the input of FM modulator.

$A_{c} \cos (2 \pi f c t)$ carierator.
Mathematical Expression [Representation] of PM:-
The phase modulated signal has the angle, $\theta(t)$ defined by,

$$
\begin{equation*}
\theta(t)=2 \pi f c t+\phi(t) \tag{1}
\end{equation*}
$$

\square instantaneous phase deviation \rightarrow Angle.
The $\phi(t)$ is directly proportional to the message sig ma

$$
\begin{align*}
& \dot{\phi}(t) \alpha m(t) \\
& \phi(t)=K_{p} m(t) \tag{2}
\end{align*}
$$

\square phase sensitivity of modulator in radians per volt.
Substitute (2) in (1),

$$
\begin{equation*}
\theta(t)=2 \pi f(t+k p m(t) \tag{3}
\end{equation*}
$$

The phase modulated signal is defined as,

$$
g(t)=A_{c} \cos \left(2 \pi f c t+k_{p} m(t)\right)
$$

where $m(t)=V_{m} \cos \omega_{m} t$.

$$
\begin{aligned}
& \therefore s(t)=A_{c} \cos \left(2 \pi f c t+K_{p} V_{m} \cos \omega_{m} t\right) \\
& \phi_{m}=K_{p} V_{m} \Rightarrow \text { Modulation Index (or) Peak phase } \\
& \text { deviation. }
\end{aligned}
$$

Frequency Modulation:-
It is the process in which the instantanec
frequency $f(t)$ is varied in linear proportion with the instantaneous magnitude 9 message signal ra ct (t).

Generation:-
FM wave can be generated by applying the integrated version $g \mathrm{~m}(t)$ to a phase modulator.

The instantaneous frequency $f(t)$ of FM signal is given

$$
\begin{equation*}
f(t)=f_{c}+k_{f} m(t) \tag{1}
\end{equation*}
$$

Frequency sensitivity Frequency of unmodulated Carrier.
A complete oscillation occurs whenever $\theta(t)$ changes by 2π radians $\Rightarrow f(t)=\frac{1}{2 \pi} \frac{d \theta(t)}{d t}$
compare (1) \& (2),

$$
\begin{aligned}
& \frac{1}{2 \pi}\left(\frac{d \theta(t)}{d t}\right)=f_{c}+k_{f} m(t) \\
& \frac{d \theta(t)}{d t}
\end{aligned}=2 \pi f_{c}+2 \pi k_{f} m(t) .
$$

Applying Integration on both sides.

$$
\begin{aligned}
& \text { Integration on both Sides. } \\
& \begin{aligned}
\int \frac{d \theta(t)}{d t} & =\int_{0}^{t} 2 \pi f_{c} d t+\int_{0}^{t} 2 \pi k_{f} m(t) d t \\
\theta(t) & =2 \pi f_{c} t+2 \pi k_{f} \int_{0}^{t} m(t) d t \\
& =2 \pi f_{c} t+2 \pi k_{i f} v_{m} \int_{0}^{t} \cos \omega_{m} t d t \\
\theta(t) & =2 \pi f_{c} t+\frac{k_{f} v_{m}}{f_{m}} \sin 2 \pi f e n t .
\end{aligned}
\end{aligned}
$$

\rightarrow frequency Deviation.
where $\beta=\Delta f / f_{m} \Rightarrow$ Modulation Index.
The equation for $F M$ ware is given by, $s(t)=A_{c} \cos \theta(t)$

$$
S(t)=A_{c} \cos \left[\omega_{c} t+\beta \sin \omega_{m} t\right] .
$$

Modulation Index of FM:-
$\beta=\Delta_{f} \rightarrow$ frequency deviation
$\overline{f_{m}} \longrightarrow$ modulating frequency.

- It decides the Bandwidth of FM, and the number of sidebands having significant Amplitudes.
\therefore The value of modulation index can be greater. than 1 (Note: For AM, ma lies bin oto 1).

Deviation Ratio:-
The modulation Index corresponding to the maximum deviation (himited to 75 kHz) and the maximum modulating Frequency (limited to 15 KHz). It is called as the Deviation Ratio:

$$
D \cdot R=\frac{\text { Maximum Deviation }}{\text { Maximum Modulating frequency. }}=\frac{-15 k}{15 k}=5
$$

Percentage Modulation:-

$$
\% \text { Modulation }=\frac{\text { Actual freq. deviation }}{\text { Maximum Allowed deviation }}
$$

Hoanform Representation

Depending on modulation index, FM can be Classified as FM systems

Narrow Band FM

$$
\begin{aligned}
& (\beta<1) \\
& (\Delta f=5 \mathrm{kHz}) \\
& \left(f_{m}=30 \mathrm{~Hz} \text { to } 3 \mathrm{KHz}\right)
\end{aligned}
$$

(Abs scaled low Index FM)

Broad band (or) wideband FM.

$$
\begin{aligned}
& (\beta>1) \simeq(5 \text { to } 2500) \\
& (\Delta f=75 \mathrm{kHz}) \\
& \left(f_{m}=30 \mathrm{~Hz} \text { to } 15 \mathrm{kHz}\right)
\end{aligned}
$$

(Alsocalled high. in de \times FM).

Narrow Band FM :-
If the modulation Index is less than one $(\beta \lll$ then it is called Narrow Band FM.

$$
\begin{aligned}
& S(t)=A_{c} \underbrace{\cos \left[2 \pi f_{c} t+\beta \sin \left(2 \pi f_{m} t\right)\right]} \\
& =A C \quad \cos (A+B) \text {. } \\
& \therefore=1 \text {. } \quad 8 \\
& s(t)=A C \cos \left(2 \pi f_{c} t\right) \cos \left(\beta \cdot \sin 2 \pi f_{m} t\right)-A_{c} \sin \left(2 \pi f_{c} t\right) \text {. } \\
& \sin (\beta \sin (2 \pi) f m t) \text {, }
\end{aligned}
$$

For Narrow band FM signal $\beta \ll 1$;

$$
\left.\begin{array}{rl}
\cos \left(\beta \sin \left(2 \pi f_{m} t\right)\right] & \simeq 1 . \\
& \sin \left(\beta \sin \left(2 \pi f_{m} t\right)\right]
\end{array} \underline{\beta \sin \left(2 \pi f_{m} t\right)^{s} s^{\prime}}\{\because \sin \theta \simeq \theta\} .\right\}
$$

Narrow band FM is mainly used in FM mobile communicat such as police wireless, Ambularrees, taxicabs etc.,

Magnitude spectrum

Phasor Diagram

Generation of Narrow Band signal:-

This modulator in volues the splitting of carrier wave into ter paths. one path is direct and other path contains -90° phase Shifting Network and a product modulator, the combination whit generates a DSB-SC modulated signal.

The difference between these two signals produces a : Narrow b and FM signal, but with some distortion.

Ideally, an FM Signal has a constant envelope and for the case of a sinusoidal modulating signal of frequency f_{1} the angle $\dot{q}_{i}(t)$ is also sinusoidal with the same frequency. Wideband FM:-

FM ware ideally contains the carrier and an infinite number of sidebands located symmetrically around the carrier. Such an FM wave has infinite Bandwidth and hence called wideband $F M$. It is mains used in Entertainment Broadcasting Application such FM radio, TV etc.,
-If $\beta>1$, then it is called as wideband FM.
(30).

It can be obtained by multiplying the narrow band FM. Signal by using suitable Frequency multiplier.

The resultant $F M s / g$ is given by,

$$
\begin{equation*}
g(t)=A_{c}\left[\sin ^{\operatorname{sos}}\left(2 \pi f_{c} t\right)+\beta \sin \left[2 \pi f_{m} t\right)\right] \tag{1}
\end{equation*}
$$

(4) The phase angle of $F M$,

$$
\theta(t)=\left[2 \pi f_{c} t+\beta \sin \left(2 \pi f_{m} t\right)\right]
$$

The FM ware can be expressed interns of complex envelope as,

$$
\begin{align*}
S(t) & =\operatorname{Re}\left\{A_{c} e^{j \theta(t)}\right\} . \\
& =\operatorname{Re}\left\{A_{c} e^{j\left(2 \pi f_{c} t+\beta \sin 2 \pi f_{m} t^{2}\right)}\right\} \\
S(t) & =\operatorname{Re}\left\{A_{c} e^{j \omega_{c} t} e^{j \beta \sin \omega_{m} t}\right\} \longrightarrow \tag{3}
\end{align*}
$$

Mathematical expression of fourier series,

$$
\begin{align*}
& f(x)=\sum_{n=-\infty}^{\infty} c_{n} e^{j n x \cdot} \longrightarrow \\
& c_{n}=\frac{1}{2 \pi} \int_{-\pi}^{\pi} f(x) e^{-j n x} d x
\end{align*}
$$

$$
\sum_{n=-\infty} \stackrel{C}{n} \text { Fourier coefficient. }
$$

The second exponential term in eq (3) can be expanded in Fourier series,

$$
\begin{aligned}
& e^{j \beta \sin \omega_{m} t}=\sum_{n=-\infty}^{\infty} c_{n} e^{j n \omega_{m}^{*} t} \\
& \quad c_{n}=\frac{1}{2 \pi} \int_{-\pi}^{\pi} e^{j \beta \sin \omega_{m} t} e^{-j n \omega_{m} t} d t
\end{aligned}
$$

$$
\begin{align*}
\text { put } \frac{\omega_{m} t=-x}{d t=d x} .
\end{align*} \begin{gathered}
c_{n}=\frac{1}{2 \pi} \int_{-\pi}^{\pi} e^{j \beta \sin x} e^{-j n x} d x \rightarrow \text { (6) } \\
c_{n}=J_{n}(\dot{\beta})^{-i}=\frac{1}{2 \pi} \int_{-\pi}^{j(\beta \sin x-n x)} e^{j(x)} d x \tag{i}
\end{gathered}
$$

where $I_{n}(\beta)$ is the Bessel function of first kind of order n

$$
\begin{equation*}
e^{j \beta \sin \omega_{m} t}=\sum_{n=-\infty}^{\infty} J_{n}(\beta) e^{j n \omega_{m} t} \tag{8}
\end{equation*}
$$

substitute (8) in (3) we get,

$$
\begin{aligned}
S(t) & =\operatorname{Re}\left\{A_{c} e^{\left.j \omega_{c} t-\sum_{n=-\infty}^{\infty} J_{n}(\beta) e^{j n \omega_{m} t}\right\}}\right. \\
& =\operatorname{Re}\left\{A_{c} \sum_{n=-\infty}^{\infty} J_{n}(\beta) e^{j\left(\omega_{c}+n \omega m\right) t}\right\} \\
& =\operatorname{Re}\left\{A_{c} \sum_{n=-\infty}^{\infty} J_{n}(\beta) e^{j 2 \pi\left(f_{c}+n f_{m}\right) t}\right\} \\
S(t) & =A_{c} \cdot \sum_{n=-\infty}^{\infty} J_{n}(\beta) \cos \left(2 \pi\left(f_{c}+n f_{m}\right) t\right)
\end{aligned}
$$

Table. The

The above equation representing fourier series of the single tone of FM signal. It has infinite number of sidebands at frequencies ($f_{c}+n f_{m}$).

Magnitude spectrum

properties of Bessel function 1. $\left.J_{n}^{n}(\beta)=(-1)^{n}\right) J_{n}^{n}(\beta)$ for all 2. $J_{n+1}(\beta)+J_{n-1}(\beta)=(2 n / \beta) J_{n}(\beta)$
3. $\sum_{n=-\infty}^{\infty} J_{n}^{2}(\beta)=1-$

$$
\begin{aligned}
& 4 \cdot J_{0}(\beta) \approx 1, J_{1}(\beta) \simeq(\beta / 2), \\
& J_{1}(\beta) \simeq 0 \text { for } n>
\end{aligned}
$$

$$
J_{2}(\beta) \cong 0 \quad \text { for } n>2 \text {. }
$$

Generation of urideband signal:-
The message s / g in given to integrator. Crystal oscillator generates Carrier s / g and gives to phase modulate The Frequency multiplier converts Narrow band FM to wideba FMby a Nonlinear device may be diode or transistor.

Comparison of Narrowband and wideband FM

Frequency Modulation ($0^{\prime \prime}$) Frequency Generation.
The FM modulator circuits used for generating FM. Signals.

Methods of FN

Direct Method:-
The baseband or modulating signal directly modulates the carrier. The carrier signal is generated by an oscillator circuit. This circuit uses a parallel tuned L-C circuit. Thus frequency of oscillation q carrier is governed by the expression $\omega_{c}=\frac{1}{\sqrt{L C}}$. In oscillator circuit frequency is controlled by a modulating voltage is called voltage controlled oscillator (VCO)
Reactance Tube Modulator:-
A Reactance modulator is an Amplifier that made to appear Inductive or capacitive by phase shift:: used to produce wide-deviation direct FM.

A tramistor or FET is operated as a variable reactance $\left(t-\theta^{\circ} C\right)$. This device is connected across the tuned circuit q an oscillator. As the instantaneous value of modulating voltage changes, the reactance offered by the Tramilor or FET will change proportionally. This will change it

Frequency of oscillator to produce. FM ware

- Basic FET Reactance Modulator:-

Assumption:-
(i) Bias Network current If is negligible as compared te the drain current of FET.
(ii) Drain to gate Impedance $\left(X_{C}\right)$ must be greater than gate to source impendance (R). ie., $x_{c} \gg R$.

The above circuit represents basic FET reactance modulator. It betraves reactance across terminals $A-B$. It may be connected across the tined circuit of the. oscillator to get FM output.

The value of this reactance is proportional to the transconductance g_{m} of the FET, which can be made depend on gate bias and its variation.

Expression :-
Gate voltage $V_{g}=I_{b} \cdot R$ (or)
(By Vtg divider rule) $V_{g}=\frac{R \cdot V .}{(R-j \times c)}$
Drain current $I_{d}=9 m \times V_{g}$.

$$
\begin{equation*}
I_{d}=9 m\left(\frac{R v}{R-j \times_{c}}\right) \tag{2}
\end{equation*}
$$

Assuming that. I_{b} is very small as compared to I_{d} $\left.\begin{array}{l}\text { Impedance between } \\ \text { terminals } A B\end{array}\right\} z=\frac{V}{I_{d}}$.

$$
\begin{align*}
& z=\frac{\forall}{\frac{g_{m} R X}{(R-j \times c)}} \\
& z=\frac{R-j \times c}{g_{m} \cdot R} \\
& z=\frac{1}{g_{m}}\left(1-\frac{j x_{c}}{R}\right) \tag{3}
\end{align*}
$$

If $x_{c} \gg R \Rightarrow z=\frac{-j x_{c}}{g_{m} R}$
Eq. (4) Clearly represents a Capacitive Reactance

$$
\begin{align*}
z=x_{e q}=\frac{x_{c}}{g_{m} \cdot R} & =\frac{1}{2 \pi f g_{m} R c} \\
z & =\frac{1}{2 \pi f c e q} \tag{5}
\end{align*}
$$

where $C_{\text {eq }}=9 m R C \cdot \rightarrow 6$.
This expression shows that FET is equivalent to a variable capacitance $C e q$.

In practice, $x_{C}=n R$ at carrier frequency.

$$
\begin{align*}
& x_{c}=\frac{1}{\omega c}=n R . \\
& c=\frac{1}{\omega n}=\frac{1}{2 \pi f n R}
\end{align*}
$$

substitute (9) in (6) $\therefore C_{e q}=\frac{9 m \not R}{2 \pi f n R}=\frac{9 m}{2 \pi f n}$.
$\therefore \quad$ The modulating voltage applied it the g ate; and the terminal $A-B$ are connected across $L C$ resonant circuit

Reactance modulator act as variable

As V_{g} increases \downarrow
$9 m$ decreases \downarrow
Ceo decreases \downarrow Frequency increases.

Types q Reactance Modulator:-

Varactor Diode Modulator:-
A varactor Diode [variable capacitor or Varicap] is a Semiconductor diode whose Junction capacitance varies linearly with the applied bias. The diode must be "Reverse biased".

The coupling capacitor isolates the varactor diode from the oscillator as for as D.C bias is concerned white providing an effective short circuit at operating frequencies.

The modulating Af voltage appears in series with the negative supply voltage. Hence the voltage applied across the varactor diode varies in proportion with modulating voltage. This will vary the Junction Capacitance of the varacte diode. The varactor diode appears in parallel with oscillator tuned circuit.

Hence the oscillator frequency will change with varactor diode capacitance and FM wave is produced. change in varactornect the $d c$ and modulating signal to the The RFC will connect offers a very high impedance at high varactor diode but it . The oscillator circuit is isolated from oscillator frequency adulating signal.
the $d c$ bias and module o the diode c_{d} is given by, The capacitance of the diode Cd

$$
C_{d L}=\begin{aligned}
& k\left(V_{D}\right)^{-1 / 2} \\
& \longmapsto T_{0} t
\end{aligned}
$$

\mapsto Total instantaneous V ty across Diode. \longrightarrow constant of proportionality.
$R F C \rightarrow$ Radio Frequency choke.

The expression for V_{D} is given by

$$
\begin{aligned}
V_{D} & =V_{0}+\text { Modulating } s / g \\
& =V_{0}+V_{m} \sin \omega_{m} t
\end{aligned}
$$

\rightarrow polarizing vtg to maintain reverse bias.
in oscillator Tank circuit,
Total capacitance $=c_{0}+c_{d}$.
Frequency if oscillation $=\omega_{i}=\frac{1}{\sqrt{t_{0}\left(c_{0}+(d)\right.}}$

$$
\omega_{i}=\frac{1}{\sqrt{L_{0}\left(C_{0}+k C V_{D}\right)^{-1 / 2}}}
$$

\therefore oscillator frequency ω_{i} is dependent on the modulating signal and thus Frequency modulation is generated.
Application:-
(i) Automatic frequency control
(ii) Remote tuning

Drawiducks q Direct mistimed of FM generation:-
(i) Carrier generation cannot be high stability which is a necessary reopirement.
varactor
(ii) Non-linearity q the diode produces frequency Variatic die to harmonics of modulating or baseband signal. \therefore FM signal is distorted.

Indirect Method [Armstrong Method] of FM Generation:-
The FM is obtained through phase modulatio in a phase modulator, carrier is shifted in phase in accordance with the modulating signal. This produces in direct FM. A. Crystal oscillator can be used hence the frequency stability is very high.
 [PART-II] -

phase Modulator:-
Nu. Generate a narrow band. FM ware using a phase modulator. Modulating signal is integrated and the phase modulated with carrier signal.

Multiplier \& Amplifiers:-
To obtain the required values of frequency deviation, carrier and modulation Index. The multiplication process is petitioned in several stages in order to increase the carrier frequency as well as frequency deviation to the assigned value.

PART-I: Generate a Narrow band FM using. phase modulator.

Let the Narrowband FM wave produced at the output of phase modulator be represented by $s_{1}(t)$.

$$
\begin{equation*}
s_{1}(t)=v_{c_{1}} \cos \left[2 \pi f_{1} t+\phi_{1}(t)\right] . \tag{1}
\end{equation*}
$$

The phase angle $\phi_{1}(t)=2 \pi k_{1} \int_{0}^{t} x(t) d t$.
\longrightarrow frequency sensitivity of the modulator.

Eq(1) in the form of $\cos (A+B)$.

$$
\begin{aligned}
s_{1}(t) & =V_{C 1} \cos \left[2 \pi f_{1} t+\phi_{1}(t)\right] \\
& =V_{C_{1}}\left[\cos \left(2 \pi f_{1} t\right) \cos \phi_{1}(t)-\sin \left(2 \pi f_{1} t\right) \sin \phi_{1}(t)\right] .
\end{aligned}
$$

If $\phi_{1}(t)$ is small then, $\cos \phi_{1}(t) \simeq 1 ; \sin \phi_{1}(t)=\simeq \phi_{1}(t)$.

$$
\begin{align*}
& S_{1}(t)=V_{c 1}\left\{\cos \left(2 \pi f_{1} t\right)(1)-\sin \left(2 \pi f_{1} t\right) \phi_{1}(t) .\right. \\
& s_{1}(t)=V_{c 1} \cos \left(2 \pi f_{1} t\right)-V_{c 1} \phi_{1}(t) \sin \left(2 \pi f_{1} t\right) \\
& s_{1}(t)=V_{c 1} \cos 2 \pi f_{1} t-V_{c 1} \sin 2 \pi f_{1} t\left[2 \pi k_{1} \int_{0}^{t} x(t) d t\right]-\sqrt{3} . \tag{3}
\end{align*}
$$

The Eq (3) represents a narrow band $F M$. Thus at the output of the phase modulator produces a narrow baind FM.

Part -II use of Frequency Multipliers \& Mixer:-
The FM signal produced at the output of phase modulator has a low carrier frequency and low modulation Index. They-are increased to an adequately high value with the help of frequency multipliers and mixer. The power level is raised. to the desired level by the amplifier.
-requency Demodulation
It is exactly opposite to that of frequency modulation. The original message signal is recovered from an incoming FM wave. FM demodulator b basically a frequency to Amplitude converter. It is expected to convert the frequency variations in FM wave at its input into Amplitude variation at its output to recover the original modulating signal.

Slope Detector:-
This detector depends on slope of frequency response characteristics of a frequency Selective Neturov..

Circuit Diagram:-

The output voltage of the tank circuit is then applied to a simple diode detector of an RC load with proper time constant. This detector is identical to the AM diode Detector.

The circuit is tuned so that its resonant frequency f_{0} is lower than carrier frequency. When the signal frequency increases above $f \mathrm{c}$, the amplitude of the carrier voltage drops. When the signal frequency decreases below f_{c}, the carrier voltage \therefore rales.

The change of voltage results becallse q change in the magnitude of the impedance in the tuned circuit as a function of frequency and results in an effective conversion of frequency modulation into Amplitude modulation. The modulation is recovered from the amplitude modulation using envelope detection.
 at the input.

Drawbacks g' slope detector:-
(i) It b inefficient
(ii) It is linear only over a limited frequency range.
(iii) It is difficult to adjust as primary\& secondary winding of the transformer tuned to slightly different frequencies.
(iv) It does not eliminate the amplitude variations and the O / P is sensitive to any amplitude variations in the input FM signal.
Balanced slope Detector:-
It is used for extending the linearity. It has two slope detector connected back to back in the opposite ends if a center tapped transformer whose input is 180° out of phase.

Balanced slope detector consists q" two slope detector circuits. The input transformer has a center tapped secondary. Hence, the input voltage to the two slope detectors are 180° out q phase. There are three tuned circuits.
(i) Primary is tuned to 工复 ic., f_{c}.
(ii) Secondary upper cat tuned above f_{c} ie.,$\left(f_{c}+\Delta f\right)$
(iii) Secondary lower circuit tuned below f_{c} ie., $\left(f_{c}-\Delta_{f}\right)$
$\therefore R_{1} C_{1}$ and $R_{2} c_{2}$ are the filters used to bypass the RF'ripple. V_{01} and V_{02} are the output Voltages of the two slope detectors. The final output voltage v_{0} is obtained by taking the subtraction of individual output Voltages.

$$
\text { ie., } V_{0}=V_{01}-V_{02}
$$

working operation q the circuit:-
The circuit operated in three ranges by dividing input frequency.

Case (i):- $f_{\text {in }}=f_{c}$.
when input frequency f_{i} in instantaneously equal to f_{c}, the induced voltage in T_{1} winding of secondary is exactly equal to that induced. in the winding T_{2}. Thus the input voltages to both diodes D_{1} and D_{2} will be same hence Voltages $V_{01} \& V_{02}$ will be identical but have opposite polarities $\left[V_{01}=-V_{02}\right] \quad V_{0}=V_{01}+V_{02}$.

$$
\therefore V_{0}=V_{01}-V_{01}=0
$$

Case (ii):- $f_{c}<f_{\text {in }}<\left(f_{c}+\Delta f\right)$
Induced voltage in the winding T_{1} is higher than the induced in $T_{2} . \therefore D_{1}$ in higher than D_{2}. Hence positive voltage V_{0}, D_{1} is higher than negative output $V_{02} q D_{2} \therefore$ output voltage V_{0} is positive.

$$
V_{0}=\text { positive }
$$

cos iii:- $\int\left(f_{c}-\Lambda f\right)<f_{i n}<f_{c}$
Induced voltage in usinding T_{3} in higher than T_{1}. Trust Vollage to Diode Do is higinertinan D_{1}. Hers negative output $V_{o n}$ is greater than $V_{O 1}$. here output volteg is negative $\quad V_{0}=$ negative

If the output frequercy goes outside the range of $\left(f_{c}-\Delta f\right)$ to $\left(f_{c}+\Delta f\right)$, the output voltage will fall due to reduction in lined crocuit resporre.
characteristics of Balorted slope detector.

$$
D_{1}=D_{2}
$$

$$
\begin{aligned}
\Gamma / P \Rightarrow D_{1} & <D_{2} \\
V_{01} & <V_{02} \\
& \downarrow
\end{aligned}
$$

$$
V_{01}{ }^{\downarrow}=V_{02}
$$

$$
\downarrow
$$

$$
V_{0}=0
$$

$$
\begin{aligned}
f_{c}<f< & \left(f_{c}+\Delta_{f}\right) \\
I / P \Rightarrow & D_{1}>D_{2} \\
& \downarrow \\
& V_{01}>V_{02} \\
& \downarrow \\
& V_{0} \text { in positive }
\end{aligned}
$$

zero crossing Detector:-

The zerocrossing Detector operated on the principle that the instantaneous. frequency of an FM curare.

It is given by $f_{1} \simeq \frac{1}{2 \Delta t}$.
where Δt is time difference between adjacent zero cross over. points of the FM wave. The time duration T is chosen, if it satisfies the following two conditions
(i) T should be small compared to ($1 / \omega$) where ω is Bandwidth ie., $T<1 / \omega$
(ii) T should be large compared to $\left(1 / f_{c}\right)$ where f_{c} is carrier frequency.

$$
\Delta t=\frac{T}{n_{0}} \rightarrow \text { Time duration } \text { no } \cdot q \text { zero crossings }
$$

Instantaneous frequency $=f_{i}=\frac{1}{2 \Delta t}=\frac{n_{0}}{2 T}$.
There is a linear relation between f_{i} and message signal $x(t)$. Hence we can recover $x(t)$ if n_{0} is known.

.. Phase Discriminator [Foster Sedey Discriminator].
Foster seeley discriminator is derived from the balanced modulator (slope detector): because the diode and load arrangement is same as balanced slope detector but method of applying the input voltage to the diodes which is proportional to the frequency deviation is entirely different.

Foster seeley Discriminator is very sensitive to input amplitude variations and therefore must be proceeded by a limiter. The primary \& secondary windings both are tuned to same center frequency fc_{c} of the incoming signal hence it will yield better linearity.

$$
v_{3}=\text { primary voltage }
$$

because it is coupled with primary wind
Circuit Diagram:-

The primary and secondary tuned circuits are tuned to same center frequency, the voltages are applied to two Diodes D_{1} and D_{2} are not constant. This is due to change in phase shift betereen primary and secondary windings depending on input frequency.

The current flowing in primary winding of T_{1} induces a voltage in secondary cuinding. Because secondary winding is centre tapped. voltage across upper portion will be $180^{\circ} \mathrm{outq}$ phase with voltage access lower portion. Voltage induced in secondary winding is 90° out of phase with voltage across primary.

The result is as follows, At resonant Inductive reactance of Secondary winding equals capacitive reactance of C_{2}.
(i) At $f_{\text {in }}=f_{c}$, the individual two op veg q Diodes will be equal \& opposite. hence $V_{0}=0$:
(ii) At $f_{\text {in }}>f \mathrm{f}$, The phase shift between the primary and secondary windings is such that output q D r is higher than D_{2}. hence V_{0} is positive circuit becomes Inductive and v_{1} leads v_{3} less than 90°; v_{2} lags v_{3} more than 90°.
(iii) At $f_{\text {in }}<f_{c}$, The phase shift between primary and secondary windings is such that output of D_{2} is higher than D_{1}, hence V_{0} is negative . Cirait becomes capacitive. V_{1} leads V_{3} more than 90°; V_{2} lags V_{3} less than 90° The olp is dependent on primary -secondary phase, relationship. hence this circuit is called "phase Discriminator

$$
\begin{gathered}
\left|V_{D 1}\right|=\left|V_{D_{2}}\right| \\
f_{i n}=f_{c}
\end{gathered}
$$

$$
\begin{aligned}
\left|V_{D 1}\right| & >\left|V_{D 2}\right| \\
f_{\text {in }} & >f_{c}
\end{aligned}
$$

$$
\left|v_{D_{1}}\right|<\left|v_{D_{2}}\right|
$$

$$
f_{\text {in }}<f_{c} \text {. }
$$

Drawbacks:-
It clos not provide amplitude limiting. so in the Presence of noise or any other Spurious Amplitude variations, the demodulator output responds to them and produces errors.

Ratio Detector:-
Ratio Detector is another frequency
lemodulator circuit. A primary Advantage of the ratio detector \& that no limiter is needed.

The circuit diagram is similar to foster seday discriminator except the following changes.
(i) Direction q Diode D_{2} is reversed.
(ii) Alarge value capacitor $C 6$ has been included in the circuit. capacitor is made up tantalum or electrolytic.
(iii) The output is taken somewhere else.

arcuit diagram:-

It $c a n$ be shown that the ratio detector output
Transformer. voltage is equal to half of the difference between output voltages from the indintut voltage is proportional similar to Foster seeley, the individual op voltages. Due to this to the difference between in io f in identical to the phase discriminator.

DESCRIPTION:-
The lond Resistor $R_{1} \& R_{2}$ are equal in value and their common connection is at ground. The output is taken betriten point c and ground in the circuit. capaction C_{4} and C_{5} \& Resistor $R_{1} \& R_{2}$ form a bridge circuit. The voltage across C_{4} and C_{5} is bridge in put voltage, while output is taken between points C and D.
with no modulation on the carrier, the voltage V_{1-3} i applied to D_{1} is same as voltage V_{2-3} applied to D_{2}. \therefore capacitors C_{4} and C_{5} charge to same voltage with polarity. shown in the circuit. since $c_{6} b$ connected across these tr capacitors, it will charge to sum of the voltage. It is very large capacitor since it takes several cycles of input signal for the capacitor to charge filly. However once it charges, it will maintain a relatively constant voltage.
since $R_{1} \& R_{2}$ are equal, their Voltage drops un μ be equal. Also voltage Drops $C_{4} \& C_{5}$ are equal. The bridge circuit. is therefore balanced. : Between the points $C \& D$, potential is Same hence $\circ \mathrm{V}$. Assume at center courier frequency, the voltage Drops across $C_{H} \& C_{5}$ are each 2 V . This means: the charge on C_{6} \& $4 V$. Then voltage across $R_{1} \& R_{2}=2 \mathrm{~V}$ each.

If frequency increases, the phase relationship in the circuit will change. this will cause the voltage across C_{4} to be greater than voltage across C_{5}. Assume, that Voltage across $C_{4}=3 V \quad \& C_{5}=1 \mathrm{~V}$. but the voltage across $R_{1} \& R_{2}$ remain same at 2 V each. because charge on C_{6} does not change. The bridge is now unbalanced.
\therefore An output voltage will appear between points $C \& D$ in the circuit: using point B as reference, the voltage at point $c \dot{I}$ IV positive and voltage across R_{2} is 2 V positive. \therefore voltage. Difference at $c i s-I v$.

If the frequency decreases, then the phase relationship will be such that the charge on C_{5} will be greater than charge on C_{4}. If the voltage across c_{5} is +3 V . with respect to B. and voltage across B_{2} remains 2 V , then at point $C \dot{n}+I V$. the bridge is unbalanced but in opposite direction, and the olp veg is of opposite polarity.
"The primary advantage of ratio detector over discriminator is that essentially insensitive to noise and amplitude variations. The C_{6} (very large capacitor) takes long time to charge or discharge. Shot no ise pulses and. minor amplitude variation are totally smoothed out.

However, the average $D C$ voltage across C_{6} is same as average signal amplitude. This voltage can therefore be used in automatic gain control applications.

- The ratio detector and Foster seeley discriminateare no longer widely used because they are difficult to implement, in integrated circuit form. Besides, the Quadrature demodulator and PLL offer for superior performance for comparable cost.
operation:-
The polarity of V_{0} i in reversed. Since connections of D2 are reversed. hare the voltages V_{01} and V_{02} across two capacitors add (Note that two voltages. subtract in Foster secley circuit). Wren Vol increases, Vas decreases and vice versa.
o/p.Vtg due to Diode D_{1} :-

$$
\begin{align*}
& V_{0}=V_{01}-\frac{V_{B}}{2} \quad\left[\text { But } V_{R}=V_{01}+V_{02}\right] . \\
& V_{0}=V_{01}-\left[\frac{V_{01}+V_{02}}{2}\right] \\
& V_{0}=\frac{V_{01}-V_{02}}{2} \rightarrow \text { (1) } \tag{1}
\end{align*}
$$

old veg due to Diode D2: :-

$$
\begin{align*}
& V_{0}=-V_{02}+\frac{V_{R}}{2} \quad \quad\left[\text { But } V_{R}=V_{01}+V_{02}\right] \\
& V_{0}=-V_{02}+\left(\frac{V_{01}+V_{02}}{2}\right) \\
& V_{0}=\frac{V_{01}-V_{02}}{2} \rightarrow \text { (2). } \tag{2}
\end{align*}
$$

Ip veg of ratio Detector:-
Adding (1) \& (2) we get,

$$
\begin{align*}
2 V_{0} & =\left(\frac{V_{01}-V_{02}}{2}\right)+\left(\frac{-V_{02}+V_{01}}{2}\right)=\left(V_{01}-V_{02}\right) . \\
V_{0} & =\frac{1}{2}\left(V_{01}-V_{02}\right) \\
& \simeq \frac{1}{2}\left(\left|V_{D 1}\right|-\left|V_{D 2}\right|\right) \rightarrow \text { (3) } \tag{3}
\end{align*}
$$

The output of ratio detector is half compared to that of Foster seeley circuit.

Merits:-
(i) Easy lo align.
(ii) Very good linearity.
(iii) Amplitude limiting is provided inherently.
(iv) It has reduced fluctuations in the output voltage.

Demerits :-
The ratio detector may not tolerate the long. period variation in signal strength. This requires an AGC signal.

PLL as FM Demodulator.
A phase locked loop (PLL) is primarily used in tracking the phase and Frequency of the carrier component of an incoming. FM signal. PLL n atio useful for synchronous demodulation of $A M-S C$. pand FM signals in presence of large noise and low signal power.

Hence PLL' most suitable for use in space vehicle to earth data links or where the loss along the transmission line or path is quite large.

A PLL is basicallij a negative feedback system It consists q three major components. These components are multiplier, loop fitter and, a voltage controlled oscillator connected together in the form of feedback loop.

A VCO [Voltage controlled oscillator] is a sine wave generator whose frequency is determined by the voltage applied to it from an external source.

Initially adjust the VCO so that when 43 Two conditions are satisfied,
Block diagram,:-
(i) frequency $q V C O$ is precisely set at ummodulated f_{c}.
(ii) Nco o/p has 90° phase shift w.r.t unmodulaled

A phase comparator compares the vCO old and
If input signal. When there is no modulation, the received IF frequency and VCO oscillator frequency are exactly same and phase comparator circuits puts out a zero signal.

When the incoming frequency changes due to presence of modulation, or frequency deration. The phase comparator creates and output which drive the Vico frequency up or down until it again matches the incoming IF. Thus the PLL tracks the incoming If signal.

The signal appearing at the i / p fo VCO is the: sum of fixed dc bias plus the comparator output signal. Everytime VCO oscillator frequency changes according to the deviation present in. FM signal and the value of voltage of vcoi/p will vary about the bias value in accordance with the modulating signal.

A low pass filter will remove, the carrier components and dc. components are filtered leaving only the modulating signal.

A PLL can track the incoming frequency only over a finite range of frequency shift. This range is called "lock range on holden range". Lock range is different for various types of PLL.

Also if the i / p frequency changes too rapidly, the loop may not lock. The frequency range over which the input will cause the loop to lock is called "pull-in capture range."
Mathematical Expression:-

$$
S(t)=A \sin \left[\omega_{c} t+\phi_{1}(t)\right] ; b(t)=A_{V} \cos \left[\omega_{c} t+\phi_{2}(t)\right] .
$$

Where
$A \rightarrow$ Amplitude of unmodulated carrier.
$A_{V} \rightarrow$ Amplitude $q V_{C O} O / p$.

$$
\begin{aligned}
& \phi_{1}(t)=2 \pi k_{f} \int_{0}^{t} x(t) d t \\
& \phi_{2}(t)=2 \pi k_{v} \int_{0}^{t} v(t) d t .
\end{aligned}
$$

$k_{f} \rightarrow$ free. Sensitivity of FM
$k_{v} \rightarrow$ freq. sensitivity of vico
op of phase comparator,

$$
\begin{aligned}
e(t) & =s(t) \cdot b(t) \\
& =A A_{V} \sin \left[\omega_{c} t+\phi_{1}(t)\right] \cos \left[\omega_{c} t+\phi_{2}(t)\right] \\
e(t) & =\frac{A A V}{2}\left[\sin \left(2 \omega_{c} t+\phi_{1}(t)+\phi_{2}(t)\right) \sin \left(\phi_{1}(t)-\phi_{2}(t)\right] .\right.
\end{aligned}
$$

It is pass on to LPF, hence it neglect high freq terms.

$$
\begin{aligned}
& e(t)=k_{m} \frac{A A V}{2} \sin \left(\phi_{1}(t)-\phi_{2}(t)\right) \\
& e(t)=k_{m} \frac{A A V}{2} \sin \left(\phi_{e}(t)\right)
\end{aligned}
$$

where $k_{m} \rightarrow$ Multiplier gain measured in pervolt. $\phi_{e}(t) \rightarrow \phi_{1}(t)-\phi_{2}(t)$ [phase error].

$$
\begin{aligned}
\phi_{e}(t) & =\phi_{1}(t)-\phi_{2}(t) \\
& =\phi_{1}(t)-2 \pi k_{v} \int_{0}^{t} v(t) d t .
\end{aligned}
$$

The loop filter operates on error signal eft) to produce output $v(t) . \quad v(t)=e(t) * h(t)$.

$$
\begin{aligned}
\therefore V(t) & =\int_{-\infty}^{\infty} e(\tau) h(t-\tau) d r \\
\therefore \phi_{e}(t) & =\phi_{1}(t)-2 \pi k_{v} \int_{0}^{t} \int_{-\infty}^{\infty} e(\tau) h(t-\tau) d \tau \cdot d t \\
\phi_{e}(t) & =\phi_{1}(t)-2 \pi k_{v} \int_{0}^{t} \int_{-\infty}^{\infty} \sin \left[\phi_{e}(\tau)\right] h(t-r) d r d t
\end{aligned}
$$

Differentiating on both sides,

$$
\begin{aligned}
& \text { vt } \frac{d \phi_{e}(t)}{d t}=\frac{d \phi_{1}(t)}{d t}-2 \pi k_{v} \quad\left[\int_{-\infty}^{\infty} \sin \phi_{e}(\tau) h(t-\tau) d \tau \cdot\right] \\
& {\left[\sin \phi_{e}(\tau) \simeq \phi_{e}(\tau)\right]} \\
& \frac{d \phi_{e}(t)}{d t}+2 \pi k_{v} \int_{-\infty}^{\infty} \phi_{e}(\tau) h(t-\tau) d \tau=\frac{d \phi_{1}(t)}{d t} \cdot 2 \pi n_{0} \\
& \text { linearirged model } q P L L \text {. }
\end{aligned}
$$

where $\left(K_{V} \frac{H(t)}{j f}\right)$ is called open loop transfer function q ML.

Transmission Banduridth :-
The effective bandwidth is defined as the difference between the tuvo extreme significant sideband frequencies on either side of FM signal.

$$
B \cdot w=f_{H}-f_{L}
$$

There are many ways to find out transmission Banduridth of FM. They are
(i) universal curve
(ii) Carson rule :
universal curve: (iii) Bessel Table.
It is defined as the separation between the two frequencies beyond which none of the side frequencies is greater than 1% of carrier Amplitude obtained when, the modulation is removed.

$$
B_{T}=2 \mathrm{Nfm}
$$

\therefore Where $\quad B T \rightarrow$ Transmission Bandwidth
$N \rightarrow$ significant sidebands.
(rit) f modulating frequency.
Cars on's rule:- (or) Thumb rale.
According to carson, B.W q. FM signal is equal to trice the sum of frequency deviation and maximum modulating frequency.

$$
B_{T}=2\left(\Delta f+f_{m}\right)=2 f_{m}(\beta+1)
$$

Deviation ratio is defined as ratio q maximum freq deviation to $B \cdot w$ of modulating signal. It is Similar to modulation Index (β) in a single tone FM.

$$
\begin{aligned}
& D R=\Delta f / \mathrm{W} \\
& B_{T}=2 \mathrm{fm}(D R+1) \quad(\because \beta=D R)
\end{aligned}
$$

- Bandwidth of FM using Bessel Table:-
99% of Bandwidth of FM wave as the separation between taro frequencies beyond which none of the side frequencies is greater than 1% q carrier amplitude obtained when modulation is removed.

\[

\]

$\eta_{\max }$ satisfies the requirement $\left|J_{n}(\beta)\right|>0.01$. It varies. with β.
modulation index
S.20

$$
\beta
$$

10.1
$2 \quad 0.3$
$3 \quad 0.5$

4	1.0
5	2.0
6	5.0
7	10.0
8	20.0
9	30.0

no of significant sidebands.

$$
2 n_{\max }
$$

2
4.

4
6
8
16
28
50
70.

UNI - III
Random Process.
Random variables
A function which taken on any value from the sample space and its range is some set of real numbers is called a random variable of the experiment.

A random variable n not random since it takes values from well defined sample space. It in not variable since it has fixed value when it occurs.

If the outcome of the experiment is the sample point ' s ', then then the random variable is represented as $x(s)$.
ex:.
If we toss a coin, the possible outcomes are Head (H) and Tail (T), \therefore The sample space contains two sample points.

$$
S=\{H, T\}
$$

If we define the function x such that

$$
x=\left\{\begin{array}{l}
1 \quad \begin{array}{c}
\text { when } S: H \\
-1 \\
\text { when } S: T \\
+33
\end{array}
\end{array} \text { then } x=\{-1,1\}\right.
$$

Consider another experiment of throwing a die. The sample space for this experiment consist of six possible outcomes.
(i) $S:\{1,2,3,4,5,6\}$.

If we define random variable as $x=s^{2}$ then $x=\{1,4,9,16,25,36\}$.
Types of Random variables:.

1. Discrete Random Variable.
2. Continuous Random variable.

Discrete Random variable:.
The random variable x is a discrete random variable if x can take on only finite number of values in any finite observation interval. Thus the discrete random variable has countable number of distinct values.
ex

$$
x=\{1,4,9,16,25,36\}
$$

is discrete random variable.

$$
134
$$

Continuous Random variables:
There are many physical systems that generate continuous outputs (outcomes). such systems generate infinite number of outputs (outcomes) within the finite period. continuous random variables can be used to define the output's of such systems.

If the random variable ' x ' takes on any value in a whole observation interval, x is called continuous random variable.
ex:
The noise voltage generated by an electronic amplifier has a continuous amplitude. Therefore sample space S of the noise voltage amplitude is continuous. hon continuous range of values. The random variable takes uncountable number of possible values.

Cumulative Distribution Function: (CDF).

Cumulative Distribution Function provides probabilistic description of a random variable.

The cumulative Distribution Function (CDF) of a random variable ' x ' is the probability that a random variable ' x ' taken a value less than or equal $10 x$.
x is the dumnuy variable.
Let us consider the probability of the event $x \leq x$. The probability of this event can be denoted as $P(x \leq x)$. Then from definition of cumulative distribution function,

$$
F_{X}(x)=P(X \leq x)
$$

$F_{X}(x)$ is called Cumulative Distribution function of random variable ' x '.

Properties © CDF:
Properly: :-
The CDF in bounded between o and

1. (ie)

$$
0 \leq F_{x}(x) \leq 1
$$

Popery 2:

$$
F_{x}(-\infty)=0 \text { and } F_{x}(\infty)=1
$$

$x=-\infty$ means no possible event Hence $P(x \leqslant-\infty)=0$
At $x=\infty$ means $P(x \leqslant \infty)$ includes probability of all possible events

$$
\therefore \quad P(x \leq \infty)=1
$$

Property 3^{3}

$$
F_{\times}\left(x_{1}\right) \leq F_{\times}\left(x_{2}\right) \quad \text { if } \quad x_{1} \leq x_{2}
$$

Numerical charaoteristice:

- It includes cfaracterteltes"ofr position and charackertstics of disperlsion.
cfiarackeriskics of posiliou:
a) Meare or expected value:

$$
\bar{x}: u^{\prime}=\mathbb{E}(x)=\left\{\begin{array}{l}
\sum_{j} x j p_{1}, \text { if } x \text { is a discrete variable } \\
\int_{-\infty}^{\infty} x f_{x}(x) d x, \text { if } x \text { is a contiruous } \\
\text { variabie }
\end{array}\right.
$$

b) Mode:

The shode of a continceous variable x is a real Humber dx defised to be the iraxiencisis point of the probability deusity $f_{x}(x)$.

$$
P\left(x=x_{H 1}\right)=M_{k} \quad P\left(x=x_{k}\right)
$$

c) MediaH:

$$
\begin{aligned}
& P\left(x \leq f_{x}\right)=P\left(x \geqslant f_{x}\right) \\
& \text { eriskics of Dispersion: }
\end{aligned}
$$

$f_{x} \rightarrow$ root of the equation
Cfiracteriskics of Dispersiom:
a) Variance:

The variauce of a random variable x is a HoH. HeqaEive Husthber.

$$
\begin{aligned}
& \text { HeqaEive Herthber. } \\
& V a r(x)=\mu_{2}=E\left((x-\bar{x})^{2}\right)=\left\{\begin{array}{l}
\sum_{k}\left(x_{k}-\bar{x}\right)^{2} p_{k_{1}}, \\
\text { if } x \text { is a. discreEe } \\
\text { variable } \\
\int_{-\infty}^{\infty}(x-\bar{x})^{2} f_{x}(x) d x, \text { if } x \text { is a contîneous } \\
\text { variabie }
\end{array}\right.
\end{aligned}
$$

b) SEathdarod deviation ior 'Heas square devialiou:
c) Raw Homethes:

$$
u_{H}^{\prime}=E\left(x^{H n}\right)=\left\{\begin{array}{l}
\sum_{k} x_{k}^{H} p_{k}^{\prime}, \text { if } x \text { is a discrete } \\
\int_{-\infty}^{\infty} x^{H} f_{k}(x) d x, \text { if } x \text { is a costisisuous } \\
\text { variable }
\end{array}\right.
$$

d) Certeral moniont (or) moments about mear:

$$
u_{n 4}=F\left((x-\bar{x})^{141}\right)=\left\{\begin{array}{l}
\sum_{k_{k}}\left(x_{k_{1}}-\bar{x}\right)^{141} p_{k}, x^{-} \text {is a discrete } \\
\int_{-\infty}^{\infty}(x-\bar{x})^{14} f_{x}(x) d x, x \text { is a costriocts } \\
\text { variable }
\end{array}\right.
$$

DisEribuEiors:
(a) Discrete distributious:
a) Binomial distributios:

$$
P(x=k)=\binom{H}{k} p^{k} q^{\mu-k} \text { for } k=1,2 \ldots,
$$

$$
\dot{q}=1-p
$$

b) Poissost distribatioll:

$$
P(x: k)=\frac{e^{-\lambda} \lambda^{k}}{k!} \text { for } k=0,1,2 \ldots
$$

ConEinuous distinibutions:
a) Uniform diskribusioll:

$$
F(x)=\left\{\begin{array}{cl}
0, & \text { if } x \leq a \\
\frac{x \cdot a}{b \cdot a}, & \text { if } a<x<b \\
1, & \text { if } x \geqslant b
\end{array}\right.
$$

$\lambda \rightarrow$ positiveigrealifiuncber.
b) Cauctiy's distuibuLion:

$$
f(x)=\frac{1}{2}+\frac{1}{\pi} \arctan x \quad, f(x)=\frac{1,}{\pi\left(1+x^{2}\right)}, 1,1 ; 1!
$$

c) Exporrertial distatiberion:

$$
F(x)=\left\{\begin{array}{cl}
1-e^{-\lambda x} & , x \geqslant 0 \\
0 & , x<0
\end{array}\right.
$$

Dorsiky quaction

$$
f(x)=\left\{\begin{array}{cl}
\lambda e^{-\lambda x} & , x \geqslant 0 \\
0 & , x<0
\end{array}\right.
$$

d) Norsual distribuliors:

$$
f(x)=\frac{1}{\sigma \sqrt{2 \pi}} e^{-\left(\frac{x-m}{\sigma}\right)^{2} / 2}
$$

$$
\mathrm{HH}_{\rightarrow} \rightarrow \text { HeaH }
$$

Rasidore Proceso:

* Thic Rándóst procese x(E) in defined as án ensembie of time furcelions "logittier with a probability reele +hat assigns a probabilily to any meaning bul event - associated witty all observtition of tone of the sampie fusctions of the random process.
* A raisdone process defiried as a fustebion of ore or more ralioloith variables as,

$$
x(t)=q_{1}\left(y_{1} \cdot f_{2} ; q_{i n} ; t\right)
$$

Where, $x(E) \rightarrow r a H d o m$ process
$\varphi_{1}, \varphi_{2} \ldots q_{H} \rightarrow{ }^{\prime}$ ir rastors varianble
$q \rightarrow$ ordiraref ferseceiors
¿ClaissificaEions:

1. A process is said to be cortinuoct rastom - process if x asd E are combisciocls.
2. A process is said to be continuoces rathdom Sequence(discrete tirne. contincrous, state space)
if is Tontiruocrs and E is discrete
3. A process is said to be Discrete ratrdom process (Costisuous tirse. digcrete state space) it x is
discarer asd't isilcostinceocs. discrete and t isil Costiticrocus.
4. A process"is" said to be: discrete raridont Sequerice. (Discrete tithe discrete state space). If x ard tare discreEe.

Deterstictistic rastom varicable:

* If all the ferture valcee car be predicerd from past observakioss is if $x(t, s)$ is known for $t \leq t_{0}$ thes it is determined for $E>t_{0}$. thest the process is called determitiestic.
Noh-determiniskic raito th variable:
* If feekirë valcies of any sample fernceion cashot be predicted" from" past observations.

Statistics of Rardorr process:
A random process is a collection of infinite Humber of rasidort variables for each 'fixed ' t '. Thus for a specific ' t ', $x(E)$ is a rashouri variable wiffe distribution function $F(x, t)=P(x(t) \leq x)$
a) First order distribution of the process $x(E)$:

* The distribution function $F(x, E)$ of a process $x(t)$ at a specific time E. Will be called tie firstionder. distribution of the process $x(E)$.

$$
f(x, E)=\frac{\partial F(x, E)}{\partial x}
$$

b) Second order distribution:

$$
F\left(x, x_{2}: \varepsilon_{1}, \varepsilon_{2}\right)=P\left(x\left(t_{1}\right) \leq x_{1}, x\left(E_{2}\right) \leq x_{2}\right)
$$

statistical Averages
i) Meals:
The Heal of Eli process xE) is tElic expected value of the ralldomis variable x at Eire E.

$$
u=E(x(t))=\int_{-\infty}^{\infty} x f(x, t) d t
$$

(i) Acseconriclation:

The Actiocorrelakion $R\left(L_{1}, E_{2}\right)$ of. the rasidorm
process $x(E)$ is the expected value of the prodelet $\times\left(t_{1}\right) \times\left(E_{2}\right)$

$$
R\left(t_{1}, E_{2}\right)=E\left(x\left(t_{1}\right) x\left(t_{2}\right)\right): \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} x_{1} x_{2} f\left(x_{1} ; x_{2}^{\prime}: t_{1}^{\prime}, t_{2}\right) d^{\prime} x_{1} d x_{2}^{\prime}
$$

(iii) Average power of $x(t)$:

$$
E\left(x^{2}(t)\right)=R(t, t)
$$

$$
E_{1}:=E_{21}=t_{3}
$$

iv) Auto covariallce:

$$
\begin{aligned}
C\left(E_{1}, E_{2}\right) & =R\left(E_{1}, E_{2}\right)-E\left(x\left(E_{1}\right)\right) E\left(x\left(E_{2}\right)\right. \\
& C\left(E_{1}, E_{1}\right)=\operatorname{Var}(x(E))
\end{aligned}
$$

Correlation corfficiert:

$$
\left.r_{\times \times(}^{1,1} E_{1}, E_{2}\right)=\frac{C\left(L_{1}, L_{2}\right)}{\sqrt{C\left(L_{1}, t_{1}\right) c\left(L_{2}, t_{2}\right)}}
$$

if $E_{1}=E_{2}=E_{\Rightarrow}^{\Rightarrow} \gamma_{x x}(E, E)=1$
Cross correlatios:
The cross correlation fertctiost of two ratrdom proces's is defincol as a Heasure of the sissilarity beEneert a sigral arid a Eithe delayed version of a^{b} secord siquat.

$$
R_{x y}\left(E_{1}, E_{2}\right)=E\left(x\left(t_{1}\right) y\left(t_{2}\right)\right)=\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} x y f\left(x, y: E_{1}, t_{2}\right) d x d y
$$

Cross covariathce:

$$
C_{x y}\left(E_{1}, E_{2}\right): R_{x y}\left(E_{1}, t_{2}\right)-E\left(x\left(t_{1}\right)\right) E\left(y\left(t_{2}\right)\right)
$$

Cross: correlation coefficient:

$$
\gamma_{x y}\left(t_{1}, t_{2}\right)=\frac{c_{x y}\left(t_{1}, t_{2}\right)}{\sqrt{c_{x x}\left(t_{1}, t_{1}\right) c_{1, f y}\left(t_{2}, t_{2}\right)}}
$$

Ortiogohal Process:

$$
R_{x y}\left(E_{1}, E_{2}\right)=0, V E_{1} \text { is } t_{2}
$$

Unconrelated, process:

$$
C_{x y}\left(E_{1}, E_{2}\right)=0 \text {. for curry, } E_{1} \text { ard } E_{2}
$$

Tistre Averaqes:
If $x(E)$ is a ratedow process, flich $\overline{x_{r}}=\frac{1}{2 \tau} \int_{-T}^{T} x\left(t_{i}\right) d t$ is called lime average of $x(E)$ over $(-T, T)$.

Statiomary, Process:
a) strict serise stationary:

A process x(t) is called $\$ s s$ if its statigtical properties are invariant to a shite of the oreqith. ? ie the processcs $x(t)$ and $x(L+C)$ Have, Efue Same gleakigkics for atiy, c.
Firstorder stationary proceso:
A process is called stationaricg to first onder, if its first order dersity function doeshot change, with a Stift ist the tine oriqin ie. $f_{x}\left(x_{1} ; E_{1}\right)_{1} y_{1, x}\left(x_{1} ; b_{1}+c\right)$ secord ordir'stationary proceos:

A process is called stationary to order: woing its second order dersitiy function doestrot, chasige withit Stifte in Elue Eime.

$$
\begin{aligned}
& \text { If Efie Eisue. } \\
& f_{x}\left(x_{1}, x_{2} ; t_{1}, E_{2}\right)=f_{r}\left(x_{1}, x_{2} ; t_{1}+r, E_{2}+c\right): \text {,ll } 101
\end{aligned}
$$

\forall values of ξ_{i}, k_{2} asted C
Wide Sense stationary process:
A rarolom process $x(E)$ is called Wss.if: , Ill est
i) IEs mean is const ie $E(x(t))=\bar{x}=$ Const , , \because, \ldots
ii) IEs acteo correlation deperds onlcy ori $\tau=E_{1}-E_{2}$
(ie) $E(x(E+\tau) x(E)): R(\tau)$
Eqqodic process:
If for a stakionary process all the time averages are equal to corresponding statistical averaqe fre" process is called as ergodic proces's.

$$
\langle x(t)\rangle^{\prime}=E(x(t))=\bar{x}
$$

IH qeheral $\left\langle x^{H}(t)\right\rangle=E\left(x^{H}(L)\right), \begin{gathered}\text { H: } H: 1,21\end{gathered}$
Meas ergodec:
A WSS is said to be erqodic in Efie sireay if the Lithe averagos of $x(E)$ converqest to Efie ensemble
averaqe $E(x(E)) \quad T \quad\{, \ldots,\| \|\| \| \|$.

Ergodic it Heath. Square:

$$
\operatorname{Lt}_{T \rightarrow \infty} \frac{1}{2 T} \int_{-T} x^{2}(t) d t: R_{x}(0)
$$

Ergodic in correlation:
ti tue shift r. is "ergodic in "Correlation at the

$$
\langle\times(E+\tau) \times(t)\rangle=L_{T+\infty}^{L} \frac{1}{2 T} \int_{-r}^{T} x(t+\tau) \times(t) d t=R_{x x}^{\prime}(\tau)
$$

Gaussian Process:

The process's pili) is a Gaussian process if
every Lister functional of $x(E)$ is a Gacessian random variable
f($\left.x_{1}^{1}, x_{2}, x_{H} ; t_{1}, E_{2}, E_{H}\right)=\frac{1}{(2 \pi)^{H / 2}} \frac{1}{\Delta^{1 / 2}} \exp \left(\frac{-1}{2 \Delta} \sum_{i=1}^{H} \sum_{j=1}^{H} \Delta i j\left(x_{i}^{\prime}-\mu_{i}\right)\right.$
For the first, order, density, of a Gaussian process $\Delta=\left|\lambda_{\mathcal{H}}\right|=\left|\operatorname{Cov}\left(x\left(E_{1}\right) \cdot x\left(t_{1}\right)\right)\right|=\left|\operatorname{var}^{b}\left(x\left(E_{1}\right)\right)\right|=\sigma_{1}^{2}$ a th $\Delta_{11}=i$

$$
\begin{aligned}
& \therefore f\left(x_{1} ; t_{1}\right)=\frac{1}{\sigma_{1} \sqrt{2 \pi}} \exp \left(-\left(x_{1}-u_{1}\right)^{2} / 2 \sigma^{2}\right) \\
& \text { For the second order density, } \gamma_{12}: x_{21}=\gamma^{\prime} \\
& f\left(x_{1}, x_{2} ; t_{1}, t_{2}\right) ;
\end{aligned}
$$

Properties:

$$
\left.+\frac{\left(x_{2}-\mu_{2}\right)^{2}}{\sigma_{2}^{2}}\right)
$$

1. If a Giassias process xE) is applied to a stable filter, Efien tie random process yore) developed at the output of the filter is also Gacessiont.
2. If Eff raudort variable e sampling a Gdessiats process xes) at time ailed by o E_{1}, t_{2}...t E^{2} are uncorrelated

$$
\text { (ie) } E^{\prime}\left(x\left(E_{i}\right)-u_{x}\left(E_{i}\right) i\right)\left(x\left(E_{j}\right)-u_{x}\left(E_{j}\right)\right)=0, i \neq j
$$

the is Efiese random variables are statistically
independent. independent.
3. If a Gachsiars process is stationary, these the process is also strictly stationary.

Transmission of a Random Process through
LTI filter: (APR/MAY 2018) (NOV/DEC2016)
(MAY/JUNF 2016)
Consider LTI filter with impulse response $h(t)$. A random process $x(t)$ at input and output random process $y(t)$ are related by convolution integral.

$$
y(t)=\int_{-\infty}^{\infty} h(\tau) \times(t-\tau) d \tau
$$

mean value of output random process will be,

$$
\begin{aligned}
m_{y}(t) & =E[y(t)] \\
& =E\left[\int_{-\infty}^{\infty} h(\tau) \times(t-\tau) d \tau\right]
\end{aligned}
$$

Interchanging the order of expectation and integralzon,

$$
\begin{aligned}
& m_{y}(t)=\int_{-\infty}^{\infty} h(\tau) E[x(t-\tau)] d \tau \\
& \\
& =\int_{-\infty}^{\infty} h(\tau) m_{x}(t-\tau) d \tau . \\
& E[x(t-\tau)]=m_{x}(t-\tau) \Rightarrow \text { mean. } \\
& \text { Since } x(t) \text { is stalionary } m_{x}(t-\tau)=m_{x}(t) .
\end{aligned}
$$

$$
\begin{aligned}
m_{y}(t) & =m_{x}(t) \int_{-\infty}^{\infty} h(\tau) d \tau \\
& =m_{x}(t-) \cdot H(0)
\end{aligned}
$$

Here $\int_{-\infty}^{\infty} n(\tau) d \tau=H(0)$ is the $D C$ response of the system.

UNIT IV
Noise Characterization
Noise sources -Noise figure, noise temperature and Noise Bandwidth. Noise in Cascaded Systems. Representation of Narrow Band Noise - In phase and Quadrature, Envelope and phase Noise performance analysis in $A M \&$ FM systems - Thereshold effect, pare emphasis and de emphasis for FM.

Noise.
It is unwanted signals that tend to disturb the transmission and processing of signals in Communication system and over which we have incomplete control (or) the spontaneous fluctuations of current or voltage in electrical circuits.
Sources of Noise.
The Noise can arise from different type of sources.

Natural Source of Noise
The natural phenomena that give rise to noise are electronic storms, solar flares and addition in space. The noise received by receiving antenna from the natural Source can only be reduced by repositioning the antenna.
Man-Made Source
It is also called. Industrial Noise. The man made Noise is generated due to the make and break process of a clout carrying cricuit. The examples are electrical motors, welding Machine, ignition system of automobile, switching gear, Fluorescent lights etc.
Extra-Torrestial Noise
The Noise originating from sun and the Space is known as Extra Terrestial Noise. It is subdivided into two group
(a) Solar Nose - Comes from sun
(b) Cosmic Noise - Comes from stars.

Our Sun is being a large body at very high temperature radiates a lot of Noise. Our stars also large $\&$ hot bodies. This cosmic noise is called as black body Noise. and it is uniformly distributed over the entire 8 ky .
Fundamental Source of Noise.
This Noise occurs with in the eledronic equipment. They are called Fundamental Sown because they are integral part of physical nature of the material. It can be eliminated by proper design in obetronic circuits \& equipments.
Types of Noise
The fundamental noise source produce different types of noise. They are as follows Types.

Noise Figure
When noise factor ' F ' is expressed in decibals. It is Known as nose figure.

Noise figure $F_{d B}=\log _{10} F$

$$
=10 \log _{10}\left[\frac{s / \mathrm{N} \text { at input }}{\mathrm{s} / \mathrm{N} \text { at Output }}\right]
$$

The Noise factor F of an amplifies or any network is defined intern of signal to noise ratio at the input and the output of the system.
It is defined as

$$
\begin{equation*}
F=\frac{S \mid N \text { ratio at the input }}{S / N \text { ratio at the Output }}=\frac{P_{\text {si }}}{P_{\text {ii }}} \times \frac{P_{\text {no }}}{P_{\text {so }}} \tag{1}
\end{equation*}
$$

where $P_{\text {si }} \& P_{n i}=$ Signal noise power at the ils
$P_{s O} \& P_{\text {no }}=$ Signal \& noise power at the de
The temperature to calculate the noise power is assumed to be room temperature. The sh at the input will always be greater than at output. This is due to noise added by the amplifier. Hence, the noise factor is means to measure the amount of noise added and its will be always greater than one. The ideal value of noise factor is unity.

The noise factor F is sometimes fropuncy dependent. Then tho value determined at one frequency is known as spot noise factor and the frequency must be stated along with noise factor.

The available power gain $G=\frac{P_{S O}}{P_{S j}} \rightarrow$ (2) Substitute (2) in (1)

$$
\begin{equation*}
F=\frac{P_{n o}}{G P_{n i}} \tag{3}
\end{equation*}
$$

Therefore the noise power at the amplifier output is $\quad P_{n o}=F G$ Ri
but $P_{n i}=K T_{B} \quad\left(\therefore T=T_{0}\right.$ room Temp)

$$
P_{\text {no }}=F G K T_{0} B \rightarrow 5
$$

Noise Factor interns of R_{n}.

$$
(S / N)_{\text {out }}=\frac{V_{s}^{2}}{4 k T_{0} B\left(R_{P}+R_{n}\right)}
$$

$R_{P} \rightarrow$ Parallel combination of amplifier $R_{i} \& R_{s}$.
(ie) $R_{p}=\frac{R_{i} R_{s}}{R_{1}+R_{s}}$
$R_{n} \rightarrow$ Noise resistance

$$
(s / N)_{i n}=\frac{V_{s}^{2}}{4 k T_{0} B R_{p}}
$$

Hence Noise factor $F=\frac{(S / N)_{n}}{(S / N)_{\text {out }}}=\frac{R_{p}+R_{n}}{R_{p}}$ If the amplifier does not produce any noise (ie) $R_{n}=0$, under this condition, noise factor will be unity.

$$
\begin{aligned}
\text { Noise figure } & \left.=\operatorname{lol}_{0}\left[\begin{array}{l}
10
\end{array}\right] \frac{S / N \text { at the input }}{S / N \text { at the output }}\right] \\
& =\operatorname{lol}_{10}(S N)_{i}-10 \log _{10}(S N)_{B} \\
F d B & =(S / N)_{i} d B-(S / N)_{0} d B .
\end{aligned}
$$

The ideal value of Noise figure is $O \mathrm{~dB}$.
Methods to Improve noise figure
(i) Use diodes \&FET for amplifiers and mixes stages.
(ii) Receiver can Operate at low temperature
(iii) use high gain Amplibeirs

Noise temperature
It is the another way to represent the noise by means of equivalent noise temperature, is used in dealing with UH and microwave low noise antennas, receivers on devices.

The total Noise referee to the input of amplifier is

$$
\begin{aligned}
P_{n i}(t o t a l)= & =\frac{P_{n o}}{G} \rightarrow \text { Noise power at of } \\
& \rightarrow \text { Gain of amplifier }
\end{aligned}
$$

But

$$
\begin{aligned}
P_{n o} & =F G K T_{0} B \\
P_{n i} & =K T_{0} B \\
P_{n i}(\text { total }) & =\frac{F G K T_{0} B}{G}=F K T_{0} B
\end{aligned}
$$

Out of this total ils noise power, the input source Conbibution is only KToB and remaining is contributed by the amplifier

$$
\begin{aligned}
& P_{\text {ni }}(\text { total })=P_{n i}+P_{n a} . \\
& P_{\text {ra }}=P_{n i}(\text { total })-P_{n i}=F K T_{0} B-K T_{0} B \\
& P_{n a}=(F-1) K T_{0 B} \\
& K T_{e q} B=(F-1) K B_{B} B \\
& T_{\text {eq }}=(F-1) T_{0}
\end{aligned}
$$

Noise Bandwidth
B is the Noise Bandwidth, which is the Bandwidth of the fuller which an ideal rectangular amplitude response that parses the Same power as the cascaded fallers in the receiver.

Noise Factors of Amplifiers in cascaded form
In practice, the filters on aimplupiers are not used isolated manner. They are used in cascaded manner.

The total noise power at ip of foist amplifier is given by

$$
P_{\text {ni }}(\text { total })=\left(F_{1}-1\right) K \text { To } B+K T o B
$$

The total noise power at off of amplation 1 wide be addition of 2 toms
Noise ils of amplifier $2=G_{1}\left(F_{1}-1\right) K B B+\left(E_{2}-1\right) k T B+$ $G_{1} K_{0} B$
The noise power at the output of second. amplifier is

$$
P_{n o}=G_{12} \times \text { (Noise i/pto } 2 \text { amplupeo) }
$$

$P_{n o}=G_{2} \times$ (Noise isp to 2 amplifier)

$$
P_{n_{0}}=G_{1} G_{2} F_{1} K T_{0} B+\left(F_{2}-1\right) K T_{0} B G_{2}
$$

The overall gain of the cascade connection is given by

$$
G=G_{1} G_{2}
$$

Overall noise factor $F=\frac{P_{n o}}{G_{1} G_{12} P_{i i}}$

$$
\begin{aligned}
& \operatorname{Pni}=K T_{0} B \\
& F=\frac{G_{1} G_{2} F_{1} K T_{0} B+G_{2}\left(F_{2}-1\right) K T_{0} B}{G_{1} G_{2} K T_{0} B}=\frac{F_{1}+\left(F_{2}-1\right)}{G_{1}}
\end{aligned}
$$

The same logic can be extended for none number of amplifier is connected in cascade. Then the expression for overall noise factor F would be

$$
F=F_{1}+\frac{\left(F_{2}-1\right)}{G_{1}}+\frac{\left(F_{3}-1\right)}{G_{1} G_{2}}+\frac{\left(F_{4}-1\right)}{G_{1} G_{2} G_{3}}+\cdots \cdot \cdot
$$

Equivalent Noise Temperature of Amplifiers in cascade

The Fris formula derived for overall nowise factor can be written in terms of overall noise temperature

$$
F=F_{1}+\frac{\left(F_{2}-1\right)}{G_{1}}+\frac{\left(F_{3}-1\right)}{G_{1} G_{2}}+\cdots \cdot
$$

Subtracting 1 from both sides, we get

$$
\begin{aligned}
& (F-1)=\frac{\left(F_{1}-1\right)}{}+\frac{\left(F_{2}-1\right)}{G_{1}}+\frac{F_{3}-1}{G_{1} G_{2}}+\cdots \\
& F-1=\frac{T o q}{T_{0}} \\
& \frac{T o q}{T_{0}}=\frac{T_{0 q}}{T_{0}}+\frac{T_{0 q} 2}{G_{1} T_{0}}+\frac{T_{0 q} 3}{G_{1} G_{2} T_{0}}+\cdots \cdot \\
& T o q=T o q 1+\frac{T o q^{2}}{G_{1}}+\frac{T o q 3}{G_{1} Q}
\end{aligned}
$$

where Tog, Toq2 are noise temperature of. amplifiers 1,2 etc.
Representation of Narrow Band Noise
The front and of receiver of Communication system consists of frequency selective filters. The filters process the desired signal and Noise.

The filters are designed to have BW large cough to pass the signal without distortion but not to admit the noise through the receiver.

This filter is narrow Band ie) B.w is small compared to mid frequency, the noise appearing at the 0/P of this fuller is called Narrow Band Noise.

Representation of Narrow Band Noise interns Of riphase and Quadrature Component Envelope and phase Consider a narrowband noise $n(t)$ of $B \cdot \omega=2 B$ centered on frequency fe as shown below.

Representation of $n(t)$ in canonical form is

$$
n(t)=r_{I}(t) \cos 2 \pi f_{c} t-\Pi_{Q}(t) \sin 2 \pi f c t \rightarrow 0
$$

Where
$H_{I}(t)$ - inphase Component of $n(t)$
$n_{Q}(t)$ - Quadrature Component of $n(t)$
Bott The probability distribution of $r(t)$ and $\psi(t)$ may be obtained from those of $\Pi_{I}(t)$ and $\Pi_{Q}(t)$.

Let η_{I} and N_{0} are independent Gaussian variable of zero mean and variance σ^{2}, the joint probability density function is represented as

$$
\begin{equation*}
\forall_{N_{1} N_{Q}}\left(n_{I}, \Pi_{Q}\right)=\frac{1}{2 \pi \sigma^{2}} \exp \left(-\left(\frac{n_{I}^{2}+n_{B}^{2}}{2 \sigma^{2}}\right)\right)= \tag{2}
\end{equation*}
$$

The probability of joint events lies between.

N

$$
\begin{aligned}
& \Pi_{I} \leq n_{I} \leq \Pi_{I}+d n_{i} \\
& \Pi_{Q} \leq N_{Q} \leq \Pi_{Q}+d_{n}
\end{aligned}
$$

(ie) The pain of random variable N_{i} and N_{a} tie jointly inside the shared area of the fig. below is given by (differentiating)

$$
\begin{equation*}
\left.\underset{n_{I} n_{Q}\left(n_{I}, n_{Q}\right) d n_{I} d n_{Q}=\frac{1}{2 \pi \sigma^{2}} \exp \left[-\frac{\left(n_{I}^{2}+n_{Q}^{2}\right)}{2 \sigma^{2}}\right]}{\Delta n_{I}}\right] d n_{n_{I} d n_{a}} \tag{3}
\end{equation*}
$$

from fig

$$
\begin{aligned}
& \Pi_{i}=\gamma \cos \psi \rightarrow(4) \\
& \Pi_{a}=\gamma \sin \psi \rightarrow \text { (5 }
\end{aligned}
$$

In the limiting Sense we may equate the shaded areas in the above bigures.

$$
\begin{equation*}
d n_{Q n_{I}}=r d r d \psi \tag{6}
\end{equation*}
$$

Sub 4,5,6 in (3)

$$
\begin{aligned}
& \quad 4,5,6 \operatorname{in} \\
& \left.=\frac{1}{2 \pi \sigma^{2}} \exp \left(\frac{-\left[r^{2} \cos ^{2} \psi+r^{2} \sin ^{2} \psi\right.}{2 \sigma^{2}}\right]\right] r d r d \psi \\
& =\frac{1}{2 \pi \sigma^{2}} \exp \left(\frac{-r^{2}}{2 \sigma^{2}}\right) r d r d \psi \\
& =\frac{r}{2 \pi \sigma^{2}} \exp \left[\frac{-r^{2}}{2 \sigma^{2}}\right] d r d \psi
\end{aligned}
$$

Thus the joint p of $\theta f R$ and ψ is

$$
\begin{equation*}
\forall R, \psi(r, \psi)=\frac{r}{2 \pi \sigma^{2}} \exp \left[\frac{-r^{2}}{2 \sigma^{2}}\right] \tag{9}
\end{equation*}
$$

The power density function is independent of ψ. Thus $f R, \psi(r, \psi)$ can be expressed as the product of $f_{R}(r)$ and $f_{\psi}(\psi)$.

The $p d f$ of ψ is

$$
f_{\psi}(\psi)=\left\{\begin{array}{cc}
1 / 2 \pi & 0 \leq \psi \leq 2 \pi \\
0 & 0 . \omega
\end{array}\right.
$$

$p d \theta$ of R is

$$
\theta R(r)=\left\{\begin{array}{cc}
r / \sigma^{2} \exp \left[\frac{-r^{2}}{2 \sigma^{2}}\right], & r \geq 0 \\
0 & 0 . \omega
\end{array}\right.
$$

where σ^{2} is variance of $n(t)$. the $p d f$ of (9) is said to be Rayleigh distribution
Let $\frac{r}{\sigma}=v, f_{v}(u)=\sigma f_{R}(r)$

$$
\begin{align*}
& \text { Sub (10) in (9) } \\
& f_{v}(u)=\sigma\left\{\begin{array}{cl}
v / \sigma \exp \left(-v^{2} / 2\right) & , v \geq 0 \\
0 & \text { elsewhere }
\end{array}\right. \\
& f_{v}(u)=\left\{\begin{array}{cl}
v \exp \left(-v^{2} / 2\right) & v \geq 0 \\
0 & 0 . \omega
\end{array} \rightarrow\right. \text { III } \tag{17}
\end{align*}
$$

Plotting equation (II)

$$
\operatorname{br}(v)
$$

The peak value of the distributions 'occur at $v=1$, In Rayloigh distrubtion for negative
values of v is zero.
Since $r(t)$ can be assumed only positive.
Representation of norrowband noise interns of inphase and Quadrature Component

Consider a narrow band noise nt) of Bandwidth $=2 B$ cantered on frequency fe as shown belau.

Representation of $n(t)$ in canonical form is

$$
n(I)=n_{I}(t) \operatorname{Cos} 2 \pi f\left(t-n_{Q}(t) \operatorname{Sin} 2 \pi f_{c} t\right.
$$

Where $n_{I}(t) \rightarrow$ inphase Component of $n(t)$
$n_{Q}(t) \rightarrow$ Quadrature Component of $n(t)$
Both $n_{I}(t)$ and $n_{Q}(t)$ are Low pass signals.
The inphase and Quadrature

Component can be extracted from the nosorowband noise using the figure below.

It is assumed that the two LPF ere ideal having a Bu equal to BC One-half of the B.w of $n(t)$]. The above schematic follows eqr(a), we can use the same equation to generate $n(t)$ given ito inphase and Quadrature Component.

The important properties of inphase and Quadrature Components are

1) The inphase and Quadrature component of nosocow band noise has zero mean.
2) If the narerowband noise is Gawsilan, then the inphave and Quadrature Components are Jointly Gaussian.
3) If the narrowband noise $n(t)$ is stationary then unphase and Quadrature Components are jointly stationary.
4) Beth the inphase and Quadrature Component have the Same-power Spectral density $S_{N i}(b)=S_{N a}(t)=\left\{\begin{array}{cc}S_{N}\left(b-b_{c}\right)+S_{N}(b+b c),-B \leq b \leq B \\ 0 & 0 . \omega\end{array}\right.$
5) The inphase and Quadrature Component have the same variance as nearow band Noise.
b) The cross spectral density of the noise

Noise Performance Analysis in AM systems
(i) Channel SNR for AM Signal.

Consider the AM Transmission that has both sidebands and a carries. The Modulated signal is mathematically represented as

$$
\begin{equation*}
S(t)=A_{0}\left[1+K_{a} m(t)\right] \cos 2 \pi f c t \tag{1}
\end{equation*}
$$

Where, $A c \cos 2 \pi f c t \rightarrow$ Carrier signal.
$m(t)$ message signal, $\mathrm{Ka} \rightarrow$ modulation index Total power in modulated signal is given by

$$
\begin{array}{rlrl}
P_{\text {total }} & =P_{c}\left[1+\frac{m_{a}^{2}}{2}\right] & & \\
& =\frac{A_{c}^{2}}{2}\left[1+\frac{m_{a}^{2}}{2}\right] & \text { carrier power } \\
P_{c} & =\frac{A_{c}^{2}}{2} \\
P_{\text {total }} & =\frac{A_{c}^{2}}{2}\left[1+\frac{K_{a}^{2}}{2}\right] & \therefore m_{a}=K_{a}
\end{array}
$$

$\frac{K_{a}^{2}}{2}$ indicates the normalized power of message signal. If P is the average power of message. signal then above equation becomes.

$$
\begin{equation*}
P_{\text {total }}=\frac{A_{c}^{2}}{2}\left[1+K_{a}^{2} p\right] \tag{2}
\end{equation*}
$$

If message B.W is B, the average noise power $=N_{0} B$

$$
\begin{align*}
(S N R)_{C} & =\frac{\text { Modulated Signal Power }}{A_{\text {average }}} \tag{3}\\
& =\frac{\frac{A_{c}^{2}}{2}\left(1+K a^{2} p\right)}{N_{0} B} \\
(S N R)_{C} & =\frac{A_{c}^{2}\left[1+K a^{2} p\right]}{2 N D B}
\end{align*}
$$

(ii) Output SNR for Envelope detector

The envelope detector consist of Modulated signal $S(t)$ plus noise $n(t)$

$$
x(t)=s(t)+n(t)
$$

Representing $n(t)$ interns of inphase and Quadrature Components

$$
\begin{array}{r}
x(t)=S(t)+n_{I} \cos 2 \pi f_{c} t-n_{Q} \sin 2 \pi f_{C} t \\
=A_{c}[1+\operatorname{Kam}(t)] \cos 2 \pi f\left(t+n_{I}(t) \cos 2 \pi f c t-\right. \\
n_{Q}(t) \sin 2 \pi f_{c} t \\
x(t)=\left[A_{C}+A_{C} K_{a} m(t)+n_{I}(t)\right] \cos 2 \pi f c t-n_{Q}(t) \\
\sin 2 \pi f c t
\end{array}
$$

noise net)

Phasor diagram of AM plus noise or phasor diagram of $x(t)$
The resultant is the envelope of $x(t)$ (ie) op of envelope detector is

$$
y(t)=\sqrt{\left(A_{c}+A_{C} K_{a} m(t)+n_{I}(t)\right)^{2}+\left(n_{Q}(t)\right)^{2}}
$$

When signal power is large compared to noise power. Then $n_{Q}(t) \& n_{I}(t)$ will be very small Compared to $A_{c}[1+K a m(t)]$

$$
\text { (5) } \begin{aligned}
\Rightarrow y(t) & =\sqrt{A_{c}\left(1+K_{a} m(t)\right)^{2}} \\
& =A_{c}\left[1+K_{a} m(t)\right] \\
y(t) & =A_{c}+A_{c} K_{a} m(t)
\end{aligned}
$$

The first term in above eqn is A_{c}. It is carries amplitude and it can be removed with the hid of blocking capacitor after envelope
detector

$$
y(t)=A_{c} K a m(t) \rightarrow \text { (6) }
$$

The power of op above signal is average power at receiver o/p.

$$
\begin{equation*}
\text { power at receiver op }=\frac{A c_{c}^{2} K_{a}^{2} p}{2} \tag{7}
\end{equation*}
$$

$P \rightarrow$ Average power of message signal $n(t)$
Noise power at receiver $O / P=N O B$

$$
\begin{align*}
(S N R)_{0} & =\frac{\text { Power at receiver op }}{\text { Noise power at receiver op }} \\
& =\frac{\frac{A_{c}^{2} K a^{2} p}{2}}{N_{0} B} \\
(S N R)_{0} & =\frac{A_{c}^{2} K_{0}^{2} P}{2 N_{0} B} \rightarrow(9) \tag{9}
\end{align*}
$$

(iii) Figure of merit

$$
\begin{aligned}
F & =\frac{\left(S N R b_{0}\right.}{(S N R)_{C}} \\
& =\frac{A_{c}^{2} K a_{a}^{2} P}{2 N O B} \times \frac{2 N_{0} B}{A_{c}^{2}\left[1+K a^{2} P\right]} \\
F & =\frac{K a^{2} P}{1+K_{a}^{2} P}
\end{aligned}
$$

For envelope detection, figure of merit is always less than unity.
Threshold effect
When the carouei to Noise ratio reduces below certain value, the message information is lost. The performance of envelope detector deteriorates sapidly and it has no proportion to carries to noise ratio. This is called Threshold effect.

Every nonlinear receiver exhibits Threshold effect coherent a receiver do not have threshold effect.

The detector output does not depends only on message signal $m(t)$ but it is a function of noise also when the noise is higher compared to message signal the noise dominates the performance of receiver.

Noise interns of envelope and phase component is

$$
n(t)=r(t) \cos \operatorname{C} 2 \pi f c t+\psi(t)
$$

δ
$r(t) \rightarrow$ Magnitude of noise, $\psi(t) \rightarrow$ phase of noise In coherent detector

$$
\begin{align*}
& x(t)=S(t)+n(t) \\
&=A_{c}[1+K a m(t)] \cos 2 \pi f c t+r(t) \cos [2 \pi f c t+ \\
&\psi(t)] \\
& x(t)=\left[A_{c}+A_{c} K a m(t)\right] \cos 2 \pi f(t+r(t) \cos [2 \pi f c t+\psi(t)] \tag{II}
\end{align*}
$$

Phasor diagram of AM signal (The term $r(t)$ is used as a reference

$$
\begin{array}{r}
\text { (Ii) } \Rightarrow \\
x(t)=\left[A_{c}+A_{c} K_{a} m(t)\right] \cos 2 \pi f_{c} t+\gamma(t)\left[\cos 2 \pi f_{c} t\right. \\
\cos \psi t-\sin 2 \pi f c t \sin \psi t] \\
x(t)= \\
\left.A_{c}+A_{c} K_{a} m(t)+r(t) \cos \psi(t)\right] \cos 2 \pi f_{c} t \\
\gamma_{1}(t) \sin 2 \pi f c t \sin \psi(t)
\end{array}
$$

Noise Performance Analysis in FM systems

The Noise w(t) is white Gaussian Noise of zero mean and power spoctral density $\mathrm{No} / 2$

The FM signal $S(t)$ has a Carries frequency fo and Bandwidth Br.
B_{T} is small than f_{c} so we use narrow band noise $n(t)$

In FM the information is transmitted by variation of the instantaneaw frequency of a Sinusoidal Carries wave.

Therefore any variation of the carries amplitude at the receiver input indicate the presence of noise.

The amplitude limiter following BPF is used to remove amplitude variations. The
resulting rectangular wave is round off by another BPF present in limier.

The discriminator Consists of two Components

1. A slope Network (on differentiator with a purdy imaginary transfer function.
2. An envelope detector that recovers the amplitude variation and thus reproduces the message signal.

The filler noise $n(t)$ is represented as

$$
n(t)=n_{I}(t) \cos 2 \pi f c t-n_{Q}(t) \sin 2 \pi f_{c} t
$$

Interns of envelope and phase.

$$
\begin{aligned}
& n(t)=r(t) \cos (2 \pi f(t+\psi(t) \\
& \text { where } r(t)=\sqrt{n_{I}^{2}(t)+n_{\theta}^{2}(t)} \\
& \psi(t)=\tan ^{-1} \frac{n_{Q}(t)}{n_{I}(t)} \\
& \text { The incoming FM signal is }
\end{aligned}
$$

$$
\begin{gathered}
S(t)=A_{c} \cos [2 \pi f(t+\phi(t)] \\
S(t)=A_{c} \cos \left[2 \pi f\left(t+\int_{0}^{\frac{7}{7}} 2 \pi k_{f} m(t) d t\right]{ }_{\partial}^{t}\right. \\
\therefore \phi(t)=2 \pi k_{f} \int_{\partial}^{t} m(t) d t
\end{gathered}
$$

The Output of BPF is

$$
\begin{align*}
x(t) & =s(t)+n(t) \\
& =A c \cos (2 \pi f c t+\phi(t))+\gamma(t) \cos [2 \pi f(t+\psi(t)] \tag{45}
\end{align*}
$$

Phasor diagram for FM wave plus narroceband for the case of high cooverer to Noise ratio.

$$
\begin{aligned}
& \operatorname{Cos}(\psi(t)-\phi(t))=\frac{\text { adjacent Side }}{r(t)} \Rightarrow \text { adj side }=\gamma(t) \cos [\psi(t)--(t)] \\
& \begin{aligned}
& \operatorname{Sin}[\psi(t)-\phi(t)]=\frac{\text { opposite side }}{r(t)} \Rightarrow \text { opposite side }= \\
& r(t) \sin [\psi(t)-\phi(t)]
\end{aligned} \\
& \begin{aligned}
\tan [\theta(t)-\phi(t)] & =\frac{\text { opposite side }}{A c+\text { adj. side }} \\
& =\frac{r(t) \sin (\psi(t)-\phi(t))}{A(+r(t) \cos (\psi(t)-\phi(t))}
\end{aligned} \\
& \theta(t)=\phi(t)+\tan ^{-1}\left\{\frac{r(t) \sin (\psi(t)-\phi(t)}{A c+r(t) \cos [\psi(t)-\phi(t)}\right\} \rightarrow \text { (6) }
\end{aligned}
$$

Let R be a random variable obsewed for envelope process and it is obsened that $R \angle A_{c}$ for more times.

$$
\begin{equation*}
\therefore \theta(t)=\phi(t)+\frac{\gamma(t)}{A c} \sin (\psi(t)-\phi(t)) \tag{7}
\end{equation*}
$$

Sub the value of $\phi(t)$.

$$
\begin{equation*}
\theta(t)=2 \pi K_{f} \int_{0}^{t} m(t) d t+\frac{r(t)}{A c} \sin (\psi(t)-\phi(t)) \tag{B}
\end{equation*}
$$

The output of discriminator is

$$
\begin{align*}
V(t) & =\frac{1}{2 \pi} \frac{d \theta(t)}{d t} \rightarrow(9) \tag{9}\\
& =\frac{1}{2 \pi} \frac{d}{d t}\left(2 \pi K_{f} \int_{0}^{t} m(t) d t+\frac{\gamma(t)}{A c} \sin (\psi(t)-\phi(t))\right. \\
& =\frac{1}{2 \pi} \times 2 \pi K_{f} \frac{d}{d t} \int_{0}^{t} m(t) d t+\frac{1}{2 \pi A c} \frac{d}{d t}(r(t) \sin (\psi(t)-\phi(t)) \\
& =K_{f} m(t)+\frac{1}{2 \pi A_{c}} \frac{d}{d t}(\gamma(t) \sin (\psi(t)-\phi(t)) \\
V(t) & =K_{f} m(t)+n(t) \rightarrow(10)
\end{align*}
$$

The noise at discriminator off is independent of message Component

$$
\begin{equation*}
n_{d}(t)=\frac{1}{2 \pi A c} \frac{d}{d t}(r(t) \sin \nu(t)) \tag{11}
\end{equation*}
$$

Noise interns of inphase and Quadrature Component

$$
\begin{equation*}
n(t)=n_{I}(t) \cos 2 \pi f c t-n_{G}(t) \sin 2 \pi f_{c} t \tag{2}
\end{equation*}
$$

Noise interns of envelope and phase component

$$
\begin{align*}
n(t) & =\gamma(t) \cos [2 \pi f c t+\psi(t)] \\
& =\gamma(t)[\cos 2 \pi f c t \cos \psi(t)-\sin 2 \pi f c t \sin \psi(t)] \tag{B}
\end{align*}
$$

Comparing 12813

$$
\begin{equation*}
n_{Q}(t)=r(t) \sin \psi(t) \tag{14}
\end{equation*}
$$

Sub（4）in（11）

$$
\begin{equation*}
n_{d}(t)=\frac{1}{2 \pi A_{C}} \frac{d}{d t} n_{Q}(t) . \tag{垂因}
\end{equation*}
$$

from eq n（1）
Acreage sprat power $=K_{f}^{2} P$
Arouse Noise Power is given by
（活 $\Rightarrow r_{C}(t)=\frac{1}{2 \pi A_{C}} \times 12 \pi f \quad[\therefore$ differentiditen of

$$
n_{d}(t)=\frac{j f}{A c} .
$$

any on with respect to tine is multiplication of
Fourier transform by $12 \pi 0]$
Therefore we obtain $n_{d}(t)$ by passing $n_{Q}(t)$ through a linear filter with a transfer function jt／fc．

Power Spectral density is

$$
S_{N a}(b)=\frac{b^{2}}{A_{c}^{2}} S_{\mathrm{Na}}(t)
$$

（a）Power Spectral density of quadrature component $n_{B}(t)$ of nacrowband noise $n(t)$

（b）Power Spectral density of $n d(t)$ of discriminator

(c) Power spectral density of noise $n_{0}(t)$ at receiver op

Power Spectral density of $\mathrm{nd}(t)$ is

$$
\operatorname{SNd}(f)=\left\{\begin{array}{cc}
\frac{N_{0} b^{2}}{A_{c}^{2}},|b| \leq \mathrm{Br} / 2 \\
0 & 0.00
\end{array}\right.
$$

The Output of LPF having Bu $\omega \angle B T / 2$ rejects the out of band components of $n d(t)$

$$
\begin{aligned}
& S_{N O}(f)=\left\{\begin{array}{cc}
\frac{N o b^{2}}{4 c^{2}}, & |f| \leq w \\
0 & 0.0
\end{array}\right. \\
& \text { Average } \theta / P \text { Noise Power }=\int_{-\omega}^{\omega} \frac{N o b^{2}}{A c^{2}} d \theta \\
& =\frac{N o}{A c^{2}}\left[\frac{b^{3}}{B}\right]_{-W}^{W} \\
& =\frac{N_{0}}{3 A_{C}{ }^{2}}\left[W^{3}+w^{3}\right] \\
& =\frac{2 \text { NoW }^{3}}{3 A C^{2}} \\
& (S N R)_{0}=\frac{\text { Average Signal Power at } 3 / P{ }^{2}{ }^{2}}{\text { Average Noise Power at O/P }} \\
& =\frac{K f^{2} P \times 3 A C^{2}}{2 N O W^{3}}
\end{aligned}
$$

$$
(S N R)_{0}=\frac{3 A_{c}^{2} K_{f}^{2} P}{2 N_{0} W^{3}}
$$

SNR at the channel

$$
\begin{aligned}
& (S N R)_{C}=\frac{\text { Average Power of Message signal at }}{\text { receiver op }} \text { Average Power of Noise in mesosege B.W y } \\
& =\frac{A_{c}^{2} / 2}{W N_{0}} \\
& (\mathrm{SNR})_{C}=\frac{A_{c}^{2}}{2 W N O} \text {. }
\end{aligned}
$$

Figure of Merit. $\quad \nu=\frac{(S N R)_{0}}{(S N R)_{C}}$

$$
\begin{aligned}
& \nu=\frac{3 A_{c}^{2} K_{f}^{2} P}{2 N w^{3}} \times \frac{2 w w}{A_{c}} \\
& \nu=\frac{3 K_{f}^{2} P}{w^{2}}
\end{aligned}
$$

The deviation ratio $\overline{D^{2}}=\frac{\Delta f}{W}=\frac{\text { frequency deviation }}{\text { Message Bandwidth. }}$

$$
D=\frac{K_{f} p^{1 / 2}}{w}
$$

Capture effect
The FM system minimize the effect of noise interfoonce. This can be offecilive when interference is weak compared to FM signal.

But if the interference is stronger than FM Signal, the $\mp M$ receiver looks to interference. This

Suppresses FM signal.
when Noise interference as well as FM Signal are of equal strength. Then the FM receiver locking fluctuates between them. This phenomenon is called capture offoct.
FM threshold affect
It is the minimum carries to now s ratio yielding an EM improvement which is not significantly deteriorated from the value predicted by the usual SNR formula assuming small noise
consider carrie's is unmodulated. The signal at Ole of discrimination is represented as

$$
x(t)=s(t)+n(t) \rightarrow(1)
$$

$S(E 2=A c \cos 2 \pi f c t$ with no modulation

$$
\begin{align*}
& x(t)=A_{C} \cos 2 \pi f c t+n_{I}(t) \cos 2 \pi f f t-n_{G}(t) \sin 2 \pi f c t \\
& x(t)=\left[A_{c}+n_{I}(t)\right] \cos 2 \pi f c t-n_{Q}(t) \sin 2 \pi f c t \rightarrow(2) \tag{2}
\end{align*}
$$

The amplitude of $n_{I}(t)$ and $n_{Q}(t)$ changes with time in a random manes. The point P, wanders around the point P s.

When carries to noise ratio is large nIT (t) \& $n_{a}(t)$ are usually smaller than A_{c} and P_{1}, spend most of ils time P_{2}.

$$
\text { From fig. } \begin{aligned}
& \tan \theta=\frac{n_{Q}(t)}{A_{C}+n_{T}(t)} \\
& \theta=\tan ^{-1}\left(\frac{n_{a}(t)}{A_{C}}\right)
\end{aligned}
$$

$\theta=\frac{n_{Q}(t)}{A_{C}} \Rightarrow \theta$ leis with in a multiple of 2π When carrier to Noise ratio is less P_{1} sweeps around the origin and oct increases (or) decreases by 2π radian. Discriminator ole is

$$
\frac{\theta^{\prime}(t)}{2 \pi}=\frac{1}{2 \pi} \frac{d \theta}{d t} .
$$

The height of impulse depends on the wandering point P_{1}.

When this signal is passed through LPF; the impulses are excited h. click sound. The chicks are produced only when $\theta(t)$ changes by $\pm 2 \pi$ radians. positive going click

Condition for ocaunance of click.
(1) $\gamma(t)>A C$
(ii) $\psi(t)<\pi<\psi(t)+d \psi(t), \frac{d \psi(t)}{d t} \geq 0$

Condition for negative click
(i) $\gamma(t)>A C$
(il) $\psi(t)<-\pi<\psi(t)+d \psi(t), \frac{d \psi(t)}{d t} \angle 0$
The carver to Noise ratio is defined as

$$
\rho=\frac{A C^{2}}{2 B N_{0}}
$$

As ρ decreases the average number of clicks per unit time decreases.

Pre-emphasis and De-emphatis

The high frequency Components are artificially emphasized by pre-empharsis feller before Modulalios.

This equalizes the low frequency and high frequency portions of PSD and complete band is occupied.

The FM signal is then transmitted. Noise adds to this signal before it reaches receives.

At receiver deemprasis is performed on high frequency components. This restores the power distributions of original signal.

Because of De-empharis at receive, high frequency components of noise are abs reduced. This improves SNR.

In order to obtain the original signal back, the transfer function of pro emplats and deensforis filters must be inverse of each other.

$$
\operatorname{Hde}(\theta)=\frac{1}{H p e(b)},-w \leq f \leq w
$$

Whore, Ide $(b) \rightarrow$ Transfer function of de-emphasis fitter
He (f) \rightarrow Transfer function of ere emphasis
The power spectral density of noise $n_{d}(t)$ at the discriminator op is

$$
S_{n d}(b)=\left\{\begin{array}{cc}
\frac{N O b^{2}}{A_{c}^{2}} & ,|b| \leq B r / 2 \\
0 & 0.6
\end{array}\right.
$$

Modified power spectral density of Noise at the de emphasis filter op is

$$
\begin{aligned}
& \mid \operatorname{Hd}(t))^{2} S_{N d}(t) \\
= & \frac{N_{0}}{A_{c}{ }^{2}} \int_{-W}^{W} f^{2}|H d e(t)|^{2} d t
\end{aligned}
$$

$I=$ Avg op Noise Power without Preemphasts \& de emphasis Avg of Noise power with prem emphases \& de emphases

$$
\begin{aligned}
& =\frac{2 N O W^{3}}{3 A c^{2}} \times \frac{N 0}{A c} \int_{-W}^{W} f^{2}(H d e(b))^{2} d t \\
& =\frac{2 W^{3}}{\left.3 \int_{-W}^{W} 1 H d C(t)\right|^{2} d \theta .}
\end{aligned}
$$

This improvement factor assumed the use of a high Carrier to Noise ratio.

Unil-V
Sampling \& Quantization
Low pass Sampling - Aliasing - Signal
Reconstruction - Quantization - Uniform and Non uniform Quantization - Quantization Noise Logarithmic Comparding - PAM, PPM, PWM, PCM , TDM, FDA.

Why Digital Communication
Due to advancements in VISI technology, it is possible to manufacture high speed embedded circuits. Such circuits are used in digital commune cation.
High speed computers are powerful software design tools are available. They make digital Communication cosier.

The compatibility of digital Communication systems with intemet has opened now area of applications.

Advantages of Digital Communication

* Simpler and cheaper due to high speed Computers and Ic Technology.
* Regeneration of signal at receiver is cary.
* Security since data encryption can be used.
* Error detection 8 correcilion
* Multiplexing can be used.

An analog signal can be converted into digital form by three basic operations (1) Sampling
(2) Quantizing and (3) encoding

Sampling:- Only sample values of analog signal at uniformly spaced time intervals retained.
Quantizing: - Each sample value is approximated by the nearer level in a finite set of discrete levelo.
Encoding: Selected level is converted to a codecuord. codewords are fou binary digits (bits). Last bit represents the sign + or ..

Low Pass Sampling
Sampling is defined as the process of Convening a continuous time signal into a discerte time signal by measuring the signal at periodic instants of time.

Consider an analog signal $g(t)$ that is continuous in both time and amplitude. $g(t)$ has infinite duration but finite energy.

Let the sample values of the signal $g(t)$ at times $t=0, \pm T_{s}, \pm 2 T_{s} \cdots$ be denoted by the Series $\left\{g\left(n T_{s}\right), n=0, \pm 1, \pm 2 \cdots\right\}$.

Where $T_{S} \rightarrow$ sampling period and $f_{S}=1 / 1 /$ Sand sing The final discrete time signal which is the reoult of Sampling is given by $g_{g}(t)$.

Fig:- Analog Signal.

Fig:: Discrete time signal
$g_{\delta}(t)$ Can be defined as the product of $g(t)$ and Dirac delta function $\frac{S}{T_{s}}(t)$ Thus we get

$$
\begin{equation*}
g_{\delta}(t)=g(t) \cdot \frac{\delta(t)}{1 /} \tag{1}
\end{equation*}
$$

The delta function $S(t)=\sum_{n=-\infty}^{\infty} S(t-n T s) \rightarrow$ (2)
Substitute oqn (2) in (1)

$$
\begin{align*}
& g_{\delta}(t)=g(t) \cdot \sum_{n=-\infty}^{\infty} S\left(t-n T_{s}\right) \\
& g_{\delta}(t)=\sum_{n=-\infty}^{\infty} g(t) S(t-n T s)
\end{align*}
$$

equation (3) Shows that $g_{g}(t)$ can be obtained as the output of an impulse modulator which lakes $g(t)$ as the modulating wave and $\frac{S}{1 s}(t)$ as the Carrie's wave.
 $S_{T_{3}}(t)$
Consider $G(\theta)$ and $G_{S}(\theta)$ as the fourier transfer of $g(t)$ and $g_{f}(t)$ respectively

And the fourier transform $\frac{S}{15}(t)$ is given by

$$
F\left[\frac{\delta}{18}(t)\right]=f_{s} \sum_{m=-\infty}^{\infty} S\left(\theta-m f_{s}\right)
$$

Thus eqn (3) Can be transformed to frequency domain as

$$
\begin{aligned}
& G_{g}(b)=G(b) *\left[f_{s} \sum_{m=-\infty}^{\infty} S(f-m f s)\right] \\
& G_{g}(b)=f_{s} \sum_{m=-\infty}^{\infty} G(b) * S(f-m b s) \\
& G g(f)=\theta_{s} \sum_{m=-\infty}^{\infty} G(b-m b s) \quad \therefore \text { By properties }
\end{aligned}
$$ of a delta fundion

Equation (4) of $G_{\delta}(t)$ represents a spectrum that is periodic in the frequency f with porch of s. Thus $G g(b)$ represents a periodic extension of the original spoctrum $G(b)$.

Dnother expression for the fourier transform of $G_{g}(\theta)$ in terms of $g(n T s$ is given by

$$
\begin{equation*}
G_{\delta}(b)=\sum_{n=-\infty}^{\infty} g\left(n T_{s}\right) \exp \left(-j 2 \pi n f T_{s}\right) \tag{5}
\end{equation*}
$$

Substilute $T_{8}=1 / 2 \omega$ in eqn (5)

$$
\begin{align*}
& G g(\theta)=\sum_{n=-\infty}^{\infty} g\left(\frac{n}{2 w}\right) \exp \left(\frac{-j 2 \pi n \theta}{2 w}\right) \\
& G_{g}(\theta)=\sum_{n=-\infty}^{\infty} g\left(\frac{n}{2 w}\right) \exp \left(\frac{-j \pi n \theta}{w}\right) \tag{b}
\end{align*}
$$

Substitute ofs $=2 \mathrm{w}$ in eqn (4)

$$
\begin{align*}
& G g(b)=2 w \sum_{m=-\infty}^{\infty} G(b-m b s) \\
& G g(b)=2 w G(b) \\
& G(b)=\frac{1}{2 N} G g(b) \rightarrow \text { (9) } \tag{7}
\end{align*}
$$

Substilite oqn (b) in oqn (1)

$$
G(b)=\frac{1}{2 w} \sum_{n=-\infty}^{\infty} g\left(\frac{n}{2 w}\right) \exp \left(\frac{-j \pi n b}{w}\right)
$$

Therefore, if the sample valuer $g(n / 2 w)$ of the signal $g(t)$ are spocified for all time, then the faurie transform $G(t)$ of the signal can be detormined by using eqn (8)

Signal Reconstruction
Consider reconstructing the signal $g(t)$ from the sequence of sample values $\{g(n / 2 w)\}$.

Substitute eqn (8) in the formula for Inverse bournes transform ∞

$$
\begin{aligned}
& \text { Source's transform, } \\
& \qquad \begin{aligned}
& g(t)=\int_{-\infty}^{\infty} G(\theta) \exp (j 2 \pi f t) d \theta \\
&=\int_{-w}^{w} \frac{1}{2 w} \sum_{n=-\infty}^{\infty} g\left(\frac{n}{2 w}\right) \exp \left(\frac{-j \pi n f}{w}\right) \\
& \operatorname{gex}(j 2 \pi f t) d t \\
& g(t)= \sum_{n=-\infty}^{\infty} g\left(\frac{n}{2 w}\right) \frac{1}{2 w} \int_{-w}^{w} \exp \left[j 2 \pi f\left(t-\frac{n}{2 w}\right)\right] d \theta .
\end{aligned}
\end{aligned}
$$

By solving the above integration we got

$$
g(t)=\sum_{n=-\infty}^{\infty} g\left(\frac{n}{2 \omega}\right) \frac{\sin (2 \pi \omega t-n \pi)}{2 \pi \omega t-n \pi}
$$

The above equation of $g(t)$ can be Simplified by using sine function which is defined $A D$

$$
\operatorname{Sin} C x=\frac{\sin (\pi x)}{\pi x} \quad x \rightarrow \text { independent }
$$

The sine function has an important interpodsiory property which is as follows

$$
\operatorname{sinc} x= \begin{cases}1 ; & x=0 \\ 0 ; & x= \pm 1, \pm 2, \ldots \ldots\end{cases}
$$

Thus using sine function eqr(9) Can be written as

$$
\begin{equation*}
g(t)=\sum_{n=-\infty}^{\infty} g\left(\frac{n}{2 w}\right) \operatorname{sinc}(2 \omega t-n) \tag{10}
\end{equation*}
$$

Thus eqn (10) provider an interpolation formula for reconstructing the original signal $g(t)$ from the sequence of samples values $g\left(\frac{n}{2 w}\right)$.

Each sample $g\left(\frac{n}{2 w}\right)$ is multiplied by a delayed version of sine function which is intorplaation function, and all the resulting coaveforms are added to obtain $g(t)$. This can be achieved by passing the sampler through an ideal law pars filler of Bandwidth.

Fig:- Reconstruction filter.

Fig:- Response of Reconstruction fillers

Aliasing
In sampling a continuous anon signal $g t$ (if bs $\angle 2 W$, then the sampling is refereed as under sampling. As a result of undersampling the spectral components of $G s(b)$ overlaps with the neighbouring components. This is called abasing.
 fold over.

Aliasing can be handled in two ways
$\left.\begin{array}{l}\text { *pro filtering } \\ \text { *post filtering Ante aliasing }\end{array}\right\} \begin{array}{r}\text { fillers }\end{array}$
Pre filtering
The analog signal is pref filtered so that the new minimum frequency W^{\prime} is reduced to $\frac{b s}{2}$ or less. Thus there are no aliaved components since

Post filtering
The aliased Components Can be removed by post filtering after sampling. The filter cut off frequency $w^{\prime \prime}$ remover the aliased components, where $w^{\prime} \angle\left(b_{s}-w\right)$. Both pref bitewing and post filtering may nerult in information lass.

Over Sampling
When the analog signal is sampled at a rate, os $>2 \mathrm{~W}$ then the Sampling is reforood as over sampling

Quantizatuen

Dope: The conversion of an analog (continuous) Sample of the signal into a digital form is called the quantizing process:

Quantuing Process has a two-bold effect

1) peak to peak range of input sample value io subdivided into finite set of division levels or deasion thracholdo.
2) The output io assigned a discrete value from benita set of representation levels or reconstruction values.
Quantization Example.
Consider a sine ware of 1 H2 and 2 Up.
It is sampled at a rate of 10 samples $/ \mathrm{soc}$. It is Quantized with two bits $[n=2]$.

So, the Quantization level, $L=2^{n} \Rightarrow L=4$. The difference between each One (ie) step Size is amp $A V_{N} \quad \Delta=\frac{V_{D P}}{L}=2 / 4=05$

- Samples
- Quantized old

Thus the bour decision levels from -iv are -1, $-0.5,0$ and +0.5 . They are speread $0.5 \Rightarrow \Delta$ aport. Now the samples are rounded off to the nearest decision level and the representation levels are moated. Since L-4, the representation levels are $-1,-0.5,080.5$. All the diverate samples of the signal takes any one of the sopresontation levels after round off.

Thus the discrete sampler of sampling are converted into digital form by Quantization.

Stop size
The soparation botwoon the docision throshisldn and the separation betwoon the representation heels of the Quantizer have a Common value callod step size.
Transfer characteristics
The transfer characteristics of a Quantizer is staircase. Sike in appearance as shown in fig below.

In fig. above, the decision thresholats of the quantizer are located at $\pm \Delta / 2, \pm \frac{3 \Delta}{2}, \pm \frac{5 \Delta}{2}, \ldots$ and the representation levels are located at $0, \pm \Delta \pm 2 \Delta$. \ldots... where A is the stop size.

Quantization error
It in the difference between the output ad input values of the Quantizer.

A Quantizer is memory less because the Quantize Output is determined only by the value of a corresponding input sample.
Types of Quantization

* Lingorm Quantization
* Nor uniform Quantization

Uniform Quantization
In this type of Quantization the step sue is equal all ar the transfer characteristics of the Quantize.

Uniform Quantization is Classified into midtreed type and midruser type
Midtread type
In the transfer characteristics of a Quantizer, in the decision thresholds are located at $\pm \Delta / 2, \pm \frac{3 \Delta}{2}$. and representation levels are located at $0, \pm \Delta, \pm 2 \mathrm{~A}$ and if the origin lies in the middle of a tread of the staircase, then the Quantizer is midtread. Mid riser type

In the transfer characteristics of a Quantizer, if the decision thresholds are
located at $0, \pm \Delta, \pm 2 \Delta \ldots$ and representation lower are looted at $\pm \triangle / 2, \pm 3 A / 2, \pm \frac{5 A}{2}$ and if the origin lies in the middle of the riser, then the Quantizer is of midriven type.
Overload level
The absolute value of overland level is one half of the peak to peak range of input sample values.
Transfer characteristics of Uniform Quantization Midtricad type

Midriser type

Quantization Noise
Quantization noise is produced in the transmitter end of a PCM system by rounding off samples values of an andolg signal to the nearest representation level of the Quantizer.

The power spectral density of Quantization mise in the receiver of is independent of that of the baseband signal and aloo the power Spectral density If Quantization noise has a large Bu compared with the signal Bu. Thus the effect of Quantization noise is similar to the effect of thermal Noise.

Non Uniform Quantization
In non-urifom Quantization the step Size Δ is not equal over the transfer characteristic of the Quantizer.

Need for Non uniform Quantization
In the transmission of speech signals, the quantizer has to accomodate signals with widely varying power levels. For example, the range of voltages covered by a speech signal is of the order of 1000 to 1 . In ciriform Quantizor is applied to such a speech signal, then there may be information loss at the low level of its signal. To overcame this Quantization with small stop size can be performed at low level input. This results in Non uniform Quantization.

In big (1) with unform quantization, only one representation level is used at the low level of input signal which is not sufficient to reconstruct the signal at the receiver.

In fig (2) with non uniform quantization, weak passages are assigned more representation levels iss a result reconstruction is made easier and information loss is prevented.
Logarithmic Companding

Non uniform Quantization can be achieved by wing a compressor followed by a uniform quantize.

The compressor amplifies the signal at low amplitude levels and attenuates the signal at high amplitude levels. After this process uniform Quantization is red. At the receiver side an expander is used to do the reverse process of the compressor.

The combination of a compressor and expander is called a compander.

Fig:- Transfer characteristics of Quantize, Compressor Expand.

PC.M [Pulse Code Modulation]

(a) Transmitter

(b) Transmission Path

(c) Receiver

Pulse code Modulation is a type of Signal encoding technique in which the analog information signal is sampled and Gartized, so that both amplitude and tine are represented in discrete form. The elements of PCM system are shown in big.

1) Sampling

The incoming message wane is sampled with a train of narrow rotangular pulses with Sampling rate greater than twice the highest frequency component W

$$
f_{S} \geq 2 \omega
$$

A low pass pre-alias filter is used at the front and of the sampler. Thur sampling converts continuously varying message wave to a limited no. of discrete values per second.
2) Quantizing

Refer Page No. I
3) Encoding

Encoding process translates the discrete set Of valuer to a more appropride form of signal Which can be eacoily transmitted over a line, radio path or optical fibre.

Any plan for representing each member of this discrete set of values as a protialles arrangements of discrete event is called a cate.

One of the discrete events in a code is called a code element on symbol. Arvargomot of symbols used in a code to represent a single value is called code word a character.

In binary code, each symbol may be either of two distinct values. In ternary code, each symbol may be one of 3 distinct values. Suppose a binary code has code-word with nits, then 2^{n} distinct values can be represented by that code.
fox ex. Sample quantized into 16 -levels can be represented by 4 -bit code coord.
There are several ways to represent the binary code words as coaveforms. figure shows examples.

Non return to zero unipolar signal.
4) Regerevátion

When PCM wave is truansmitbe through the charnel, it is of obtest by distoniono and noise of the chanel. The effect of the distortion and noise are controlled by using chain of regenerative repeaters

A regornarivie repeater performs 3 base functions, randy equalization, tinning and decision making.

The equalizer shapes the received pubes so as to compensate effects of amplutide ard prose distortions caused by imperfections of the charnel

The timing circuit provides a periotic pulse train for sampling the equalize plies at lime when SNR is a maximum.

The decision device is enabled when the amplitude of equalized pulse plus noise exceds a predetermined threshold deuce.

However the regenerated signal differs from the original signal due to two main reasons.

1) The presence of chancel rouse and interference Causes the repeater to make wrong decision o and introduces bit emos.
2) If the spacing between soceived pulses deviates from its assigned values a jitter is introduced.
3) Decoding

The first operation in the soclive is to regenerate the received pulses. These puler are regrouped into code-words and decoded into a quantized PAM signal. The decoded pule ampilunde is sum of all pubes in the code word weighted by its place value.
b) Reconstruction

The final operation in the receiver is to recover the analog signal by passing decoder ole through a reconstruction tie

Whose cut off frequency is equal to the massage Bur ' w '.

1) Multplaxing and synchronization

In applications using PCM, multiploxing Can be achieved, which nods synchronization betwoon transmitter and receiver.
B. of PCM

$$
\begin{aligned}
& \text { Signaling rate } \leq f_{0}=n \times f_{s} \\
& \text { of PCM }
\end{aligned}
$$

$n \rightarrow$ no of bits/sample ifs \rightarrow sampling sate
Be of $\mathrm{POM} \geq \frac{1}{2} \times f_{5}$

$$
\text { B. } w \geq 1 / 2 \times n \times+s
$$

Coding efficiency

$$
D_{P c y}=\frac{\text { Maximum norite bits }}{\text { Actual No. of bits }} \times 100
$$

Transmission spool.
It is deferied as the digital transmission data rate at which serial PCM bubo are chocked out of the transmitter.

Application of PMM

* Initial telephone system
- Digtral Audio
* Digital video
* PSTN - public switched telephone nu

Advantages

* High Noise immunity
* Supports use of Repeaters
* Coding provider high seciurly

Disadvantages

* Encoding, decoding \& Quantization Circuit a Complex.
* PCM requires large Bu

Pulse Amplitude Modulation
The amplitude of a Carrier Consisting of a periodic train of rectangular pulse is varied in proportion in proportion to sample value of a message signal.

The pulses in PAM can be of soctangular shape or the top of the pulse can have variations as per the signal.

Waveforms.
 Carrion (Switch on-rff)

Let $x(t)$ is a continuous signal. It is sampled at the interval of T_{S} to generate PAM signal.

The amplitude of the pulse is same as amplitude of $x(t)$ at the instant of Sampling. The switch 's' can be transmittor (or) FET. The signal $C(t)$ is the base drive of the switch $S(t)$ is the PAM signal. The with of the pulse in $C(t)$ determines the width of the PAM pulse.

Sampling switch

In this method, the amplitude of the pulse is same as amplitude of input signal. But its top is flat.

The circuit is basically Sample and hold circuit At the sampling instant, sampling switch is closed
for a very small period. During this period the capacitor c voltage becomes equal to the volloge of $x(t)$.

The sampling switch is opened and capacitor c holds the charge.

The discharge. switch s is then closed to discharge capacitor to zero volts.

The docharge switch is then oponed and. capacitor has no voltage. The capacitor romains charged for a fired poried τ. Thus the flat top sampled. PAM signal is generated.

Again after the period Ts. Sampling switch is closed to take now sample. This periodic galling of sample and hold circuit generates the flat top PAM signal.
Naturally Sampled PAM signal

$$
\begin{aligned}
& \text { rally Sampled PAM signal } \\
& S(t)=\frac{\tau A}{T B} \sum_{n=-\infty}^{\infty} x(t) \operatorname{sinc}(\operatorname{ton} \tau) e^{\text {j2mnbort }}
\end{aligned}
$$

spectrum of Naturally Sampled PAM Signal

$$
s(\theta)=\frac{\tau A}{T_{s}} \sum_{n=-\infty}^{\infty} \sin c(n f s \tau) \times(f-n f s)
$$

Flat top PAM

$$
\begin{aligned}
& \text { Lat top PAM } \\
& \qquad S(t)=\sum_{n=-\infty}^{\infty} x\left(n T_{S}\right) h\left(t-n T_{S}\right) \\
& L \text { tom PAM }
\end{aligned}
$$

Spectrum of Fat top PAM

$$
s(f)=f s \sum_{n=-\infty}^{\infty} x(f-n f s) H(b)
$$

Pulse width and Pulse position Modulation

* Both Modulate the time parameter of pulses.
* PPM has fixed width pulses where aD width of PDM pulse varies.
* with PPM, the position of a constant width pulse within a prescribed time slot is varied according to the amplitude of the sample of the analog signal.

In PDM (or) PWM, the width of the Constant amplitude pulse is varied proportional to the amplitude of analog signal at the time signal is Sampled.

Block diagram.

* for generating PDM and PPM waveform we nod sampling and modulation operation.

The sawtooth generator generates the Sawtooth signal with a frequency of bs. This sawtooth signal is also called as sampling signal. and it is applied to the inverting input of comparator.

The modulating Signal $x(t)$ is applied to the non investing input of the compeoator.

The output of the comparator is high only When instantaneous value of $x(t)$ is higher than Hat of sawtooth waveform.

Thus the leading edge of PPM signal occurs at the fixed time period (ide) KTs.

The falling edge of the PDM wave depends on the amplitude of the signal $x(t)$.

When sawtooth voltage is greater than voltage of $x(t)$ the output of comparator romains zero.

If the sawtooth waveform is reversed, then falling edge. will be fixed and loading odge will be modulate l.

To generate PPM, PDM signal is used as the trigger input to manostable multivibrator. The monostable ole remains zero until it is triggered. The monostable is triggered on the balling edge of PDM.

The width of the PPM pubs is determined by the Monostable multivibrator.

TDM (Time Division Multiplexing)
The transmission of the message samples utilizes the communication channel for only a fraction of the sampling interval on a periodic basis, and in this way the time interval between adjacent samples is cleared for use by some other independent message sources on a time shared basis.

- In Time division Mulliplowing, all the signals to be transmitted are not transmitted simultaneously. Instead they are transmitted one by one, so each signal will be transmitted for very shoot time.

Block diagram of TPM System

Each input message signal is fort band limited by a low pass anti aliasing faller to remove the frequencies, that are nonessential to an adequate signal representation.

Then the low pass filler outputs are applied to a Commulator, which is usually implemented using rotating switch or electronic switch. It rotates at for rotations per second. As the switch relates, it is going to make Contact with the position 1,3,3 or N for short time.

Hence these switch arm will connect there N signals one by one to the Communication channel. The rotating Switch is samples each message during each of its rotations
The function of the commutator is two bold.
(i) To take a narrow sample of each N input messages at a rate os that is slightly higher than 2 fm . Where for is the cut off frequency of the anti aliasing filter.
(ii) To sequentially interleave there N samples inside

As per the rotation of the commutator of the Samples of the data inputs are collected by it. Here fo is the rate of rotation of the commutator, thus denotes sampling frequency of the system. Suppose we have a date inputs, then one after the other, according to the rotation, these date inputs after getting multiplexed transmitted over the Common channel.

Now at the roceiverend, a de commutator is placed that is synchronized with the commutator at the transmitting and. This de commutator separates the time division multiplexed signal at the roceived end.

The commutator and decommutator must have Same rotational speed so as to have accurate demultiplexing of the signal at rociving and.

According to the rotation performed by the denwerdudator Commutator, the Samples are collected by the LPF and the original data input is rocovord at the receiver.

Let for be the maximum signal frequency and bs is the sampling frequency then

$$
f_{s} \geq 2 f_{m}
$$

Thus, the time duration in between successive sample is given as

$$
T_{s}=\gamma_{f S}
$$

Frequency division Muliplang
In this, a number of signals are transmitted at the same time, and each eoure trannten its signal in the allotted frequency sarge. There is a suitable frequency gap between the eadjacat signals to avoid over lapping. Since the signals are transmitted in the allotted frequancion so this deocases the probability of collision.

Application of EXM

1) In the first generation of mobile phones, FDM was used.
2. The use of EDM in television broadcasting.
3. FDM is used to broadcast FM and AM radio frequencies.
